Do you want to publish a course? Click here

Predicting Contextual Sequences via Submodular Function Maximization

261   0   0.0 ( 0 )
 Added by Debadeepta Dey
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

Sequence optimization, where the items in a list are ordered to maximize some reward has many applications such as web advertisement placement, search, and control libraries in robotics. Previous work in sequence optimization produces a static ordering that does not take any features of the item or context of the problem into account. In this work, we propose a general approach to order the items within the sequence based on the context (e.g., perceptual information, environment description, and goals). We take a simple, efficient, reduction-based approach where the choice and order of the items is established by repeatedly learning simple classifiers or regressors for each slot in the sequence. Our approach leverages recent work on submodular function maximization to provide a formal regret reduction from submodular sequence optimization to simple cost-sensitive prediction. We apply our contextual sequence prediction algorithm to optimize control libraries and demonstrate results on two robotics problems: manipulator trajectory prediction and mobile robot path planning.



rate research

Read More

Continuous submodular functions are a category of generally non-convex/non-concave functions with a wide spectrum of applications. The celebrated property of this class of functions - continuous submodularity - enables both exact minimization and approximate maximization in poly. time. Continuous submodularity is obtained by generalizing the notion of submodularity from discrete domains to continuous domains. It intuitively captures a repulsive effect amongst different dimensions of the defined multivariate function. In this paper, we systematically study continuous submodularity and a class of non-convex optimization problems: continuous submodular function maximization. We start by a thorough characterization of the class of continuous submodular functions, and show that continuous submodularity is equivalent to a weak version of the diminishing returns (DR) property. Thus we also derive a subclass of continuous submodular functions, termed continuous DR-submodular functions, which enjoys the full DR property. Then we present operations that preserve continuous (DR-)submodularity, thus yielding general rules for composing new submodular functions. We establish intriguing properties for the problem of constrained DR-submodular maximization, such as the local-global relation. We identify several applications of continuous submodular optimization, ranging from influence maximization, MAP inference for DPPs to provable mean field inference. For these applications, continuous submodularity formalizes valuable domain knowledge relevant for optimizing this class of objectives. We present inapproximability results and provable algorithms for two problem settings: constrained monotone DR-submodular maximization and constrained non-monotone DR-submodular maximization. Finally, we extensively evaluate the effectiveness of the proposed algorithms.
We study the recently introduced idea of worst-case sensitivity for monotone submodular maximization with cardinality constraint $k$, which captures the degree to which the output argument changes on deletion of an element in the input. We find that for large classes of algorithms that non-trivial sensitivity of $o(k)$ is not possible, even with bounded curvature, and that these results also hold in the distributed framework. However, we also show that in the regime $k = Omega(n)$ that we can obtain $O(1)$ sensitivity for sufficiently low curvature.
This paper bridges discrete and continuous optimization approaches for decomposable submodular function minimization, in both the standard and parametric settings. We provide improved running times for this problem by reducing it to a number of calls to a maximum flow oracle. When each function in the decomposition acts on $O(1)$ elements of the ground set $V$ and is polynomially bounded, our running time is up to polylogarithmic factors equal to that of solving maximum flow in a sparse graph with $O(vert V vert)$ vertices and polynomial integral capacities. We achieve this by providing a simple iterative method which can optimize to high precision any convex function defined on the submodular base polytope, provided we can efficiently minimize it on the base polytope corresponding to the cut function of a certain graph that we construct. We solve this minimization problem by lifting the solutions of a parametric cut problem, which we obtain via a new efficient combinatorial reduction to maximum flow. This reduction is of independent interest and implies some previously unknown bounds for the parametric minimum $s,t$-cut problem in multiple settings.
81 - Jianxiong Guo , Weili Wu 2020
Profit maximization (PM) is to select a subset of users as seeds for viral marketing in online social networks, which balances between the cost and the profit from influence spread. We extend PM to that under the general marketing strategy, and form continuous profit maximization (CPM-MS) problem, whose domain is on integer lattices. The objective function of our CPM-MS is dr-submodular, but non-monotone. It is a typical case of unconstrained dr-submodular maximization (UDSM) problem, and take it as a starting point, we study UDSM systematically in this paper, which is very different from those existing researcher. First, we introduce the lattice-based double greedy algorithm, which can obtain a constant approximation guarantee. However, there is a strict and unrealistic condition that requiring the objective value is non-negative on the whole domain, or else no theoretical bounds. Thus, we propose a technique, called lattice-based iterative pruning. It can shrink the search space effectively, thereby greatly increasing the possibility of satisfying the non-negative objective function on this smaller domain without losing approximation ratio. Then, to overcome the difficulty to estimate the objective value of CPM-MS, we adopt reverse sampling strategies, and combine it with lattice-based double greedy, including pruning, without losing its performance but reducing its running time. The entire process can be considered as a general framework to solve the UDSM problem, especially for applying to social networks. Finally, we conduct experiments on several real datasets to evaluate the effectiveness and efficiency of our proposed algorithms.
Many large-scale machine learning problems--clustering, non-parametric learning, kernel machines, etc.--require selecting a small yet representative subset from a large dataset. Such problems can often be reduced to maximizing a submodular set function subject to various constraints. Classical approaches to submodular optimization require centralized access to the full dataset, which is impractical for truly large-scale problems. In this paper, we consider the problem of submodular function maximization in a distributed fashion. We develop a simple, two-stage protocol GreeDi, that is easily implemented using MapReduce style computations. We theoretically analyze our approach, and show that under certain natural conditions, performance close to the centralized approach can be achieved. We begin with monotone submodular maximization subject to a cardinality constraint, and then extend this approach to obtain approximation guarantees for (not necessarily monotone) submodular maximization subject to more general constraints including matroid or knapsack constraints. In our extensive experiments, we demonstrate the effectiveness of our approach on several applications, including sparse Gaussian process inference and exemplar based clustering on tens of millions of examples using Hadoop.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا