No Arabic abstract
Continuous submodular functions are a category of generally non-convex/non-concave functions with a wide spectrum of applications. The celebrated property of this class of functions - continuous submodularity - enables both exact minimization and approximate maximization in poly. time. Continuous submodularity is obtained by generalizing the notion of submodularity from discrete domains to continuous domains. It intuitively captures a repulsive effect amongst different dimensions of the defined multivariate function. In this paper, we systematically study continuous submodularity and a class of non-convex optimization problems: continuous submodular function maximization. We start by a thorough characterization of the class of continuous submodular functions, and show that continuous submodularity is equivalent to a weak version of the diminishing returns (DR) property. Thus we also derive a subclass of continuous submodular functions, termed continuous DR-submodular functions, which enjoys the full DR property. Then we present operations that preserve continuous (DR-)submodularity, thus yielding general rules for composing new submodular functions. We establish intriguing properties for the problem of constrained DR-submodular maximization, such as the local-global relation. We identify several applications of continuous submodular optimization, ranging from influence maximization, MAP inference for DPPs to provable mean field inference. For these applications, continuous submodularity formalizes valuable domain knowledge relevant for optimizing this class of objectives. We present inapproximability results and provable algorithms for two problem settings: constrained monotone DR-submodular maximization and constrained non-monotone DR-submodular maximization. Finally, we extensively evaluate the effectiveness of the proposed algorithms.
In this paper, we introduce a novel technique for constrained submodular maximization, inspired by barrier functions in continuous optimization. This connection not only improves the running time for constrained submodular maximization but also provides the state of the art guarantee. More precisely, for maximizing a monotone submodular function subject to the combination of a $k$-matchoid and $ell$-knapsack constraint (for $ellleq k$), we propose a potential function that can be approximately minimized. Once we minimize the potential function up to an $epsilon$ error it is guaranteed that we have found a feasible set with a $2(k+1+epsilon)$-approximation factor which can indeed be further improved to $(k+1+epsilon)$ by an enumeration technique. We extensively evaluate the performance of our proposed algorithm over several real-world applications, including a movie recommendation system, summarization tasks for YouTube videos, Twitter feeds and Yelp business locations, and a set cover problem.
Submodular continuous functions are a category of (generally) non-convex/non-concave functions with a wide spectrum of applications. We characterize these functions and demonstrate that they can be maximized efficiently with approximation guarantees. Specifically, i) We introduce the weak DR property that gives a unified characterization of submodularity for all set, integer-lattice and continuous functions; ii) for maximizing monotone DR-submodular continuous functions under general down-closed convex constraints, we propose a Frank-Wolfe variant with $(1-1/e)$ approximation guarantee, and sub-linear convergence rate; iii) for maximizing general non-monotone submodular continuous functions subject to box constraints, we propose a DoubleGreedy algorithm with $1/3$ approximation guarantee. Submodular continuous functions naturally find applications in various real-world settings, including influence and revenue maximization with continuous assignments, sensor energy management, multi-resolution data summarization, facility location, etc. Experimental results show that the proposed algorithms efficiently generate superior solutions compared to baseline algorithms.
Many large-scale machine learning problems--clustering, non-parametric learning, kernel machines, etc.--require selecting a small yet representative subset from a large dataset. Such problems can often be reduced to maximizing a submodular set function subject to various constraints. Classical approaches to submodular optimization require centralized access to the full dataset, which is impractical for truly large-scale problems. In this paper, we consider the problem of submodular function maximization in a distributed fashion. We develop a simple, two-stage protocol GreeDi, that is easily implemented using MapReduce style computations. We theoretically analyze our approach, and show that under certain natural conditions, performance close to the centralized approach can be achieved. We begin with monotone submodular maximization subject to a cardinality constraint, and then extend this approach to obtain approximation guarantees for (not necessarily monotone) submodular maximization subject to more general constraints including matroid or knapsack constraints. In our extensive experiments, we demonstrate the effectiveness of our approach on several applications, including sparse Gaussian process inference and exemplar based clustering on tens of millions of examples using Hadoop.
We study the recently introduced idea of worst-case sensitivity for monotone submodular maximization with cardinality constraint $k$, which captures the degree to which the output argument changes on deletion of an element in the input. We find that for large classes of algorithms that non-trivial sensitivity of $o(k)$ is not possible, even with bounded curvature, and that these results also hold in the distributed framework. However, we also show that in the regime $k = Omega(n)$ that we can obtain $O(1)$ sensitivity for sufficiently low curvature.
Profit maximization (PM) is to select a subset of users as seeds for viral marketing in online social networks, which balances between the cost and the profit from influence spread. We extend PM to that under the general marketing strategy, and form continuous profit maximization (CPM-MS) problem, whose domain is on integer lattices. The objective function of our CPM-MS is dr-submodular, but non-monotone. It is a typical case of unconstrained dr-submodular maximization (UDSM) problem, and take it as a starting point, we study UDSM systematically in this paper, which is very different from those existing researcher. First, we introduce the lattice-based double greedy algorithm, which can obtain a constant approximation guarantee. However, there is a strict and unrealistic condition that requiring the objective value is non-negative on the whole domain, or else no theoretical bounds. Thus, we propose a technique, called lattice-based iterative pruning. It can shrink the search space effectively, thereby greatly increasing the possibility of satisfying the non-negative objective function on this smaller domain without losing approximation ratio. Then, to overcome the difficulty to estimate the objective value of CPM-MS, we adopt reverse sampling strategies, and combine it with lattice-based double greedy, including pruning, without losing its performance but reducing its running time. The entire process can be considered as a general framework to solve the UDSM problem, especially for applying to social networks. Finally, we conduct experiments on several real datasets to evaluate the effectiveness and efficiency of our proposed algorithms.