Do you want to publish a course? Click here

Generation of a 650 nm - 2000 nm Laser Frequency Comb based on an Erbium-Doped Fiber Laser

397   0   0.0 ( 0 )
 Added by Gabriel Ycas
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 terahertz of bandwidth, from 660 nm to 2000 nm. The system generates 1.2 nJ, 70 fs pulses at 1050 nm by amplifying the 1580 nm laser light in Er:fiber, followed by nonlinear broadening to 1050 nm and amplification in Yb:fiber. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1050 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.



rate research

Read More

We have developed a Watt-level random laser at 532 nm. The laser is based on a 1064 nm random distributed ytterbium-gain assisted fiber laser seed with a 0.35 nm line-width 900mW polarized output power. A study for the optimal length of the random distributed mirror was carried out. An ytterbium-doped fiber master oscillator power amplifier architecture is used to amplify the random seeder laser without additional spectral broadening up to 20 W. By using a periodically poled lithium niobate (PPLN) crystal in a single pass configuration we generate in excess of 1 W random laser at 532 nm by second harmonic generation with an efficiency of 9 %. The green random laser exhibits an instability <1 %, optical signal to noise ratio >70 dB, 0.1 nm linewidth and excellent beam quality.
A compact and robust coherent laser light source that provides spectral coverage from the ultraviolet to infrared is desirable for numerous applications, including heterodyne super resolution imaging[1], broadband infrared microscopy[2], protein structure determination[3], and standoff atmospheric trace-gas detection[4]. Addressing these demanding measurement problems, laser frequency combs[5] combine user-defined spectral resolution with sub-femtosecond timing and waveform control to enable new modalities of high-resolution, high-speed, and broadband spectroscopy[6-9]. In this Letter we introduce a scalable source of near-single-cycle, 0.56 MW pulses generated from robust and low-noise erbium fiber (Er:fiber) technology, and we use it to generate a frequency comb that spans six octaves from the ultraviolet (350 nm) to mid-infrared (22500 nm). The high peak power allows us to exploit the second-order nonlinearities in infrared-transparent, nonlinear crystals (LiNbO$_3$, GaSe, and CSP) to provide a robust source of phase-stable infrared ultra-short pulses with simultaneous spectral brightness exceeding that of an infrared synchrotron[10]. Additional cascaded second-order nonlinearities in LiNbO$_3$ lead to comb generation with four octaves of simultaneous coverage (0.350 to 5.6 $mu$m). With a comb-tooth linewidth of 10 kHz at 193 THz, we realize a notable spectral resolving power exceeding 10$^{10}$ across 0.86 PHz of bandwidth. We anticipate that this compact and accessible technology will open new opportunities for multi-band precision spectroscopy, coherent microscopy, ultra-high sensitivity nanoscopy, astronomical spectroscopy, and precision carrier-envelope phase (CEP) stable strong field phenomena.
117 - Hanzhong Wu , Jun Ke , Panpan Wang 2021
In this work, we describe an updated version of single arm locking, and the noise amplification due to the nulls can be flexibly restricted with the help of optical frequency comb. We show that, the laser phase noise can be divided by a specific factor with optical frequency comb as the bridge. The analytical results indicate that, the peaks in the science band have been greatly reduced. The performance of the noise suppression shows that the total noise after arm locking can well satisfy the requirement of time delay interferometry, even with the free-running laser source. We also estimate the frequency pulling characteristics of the updated single arm locking, and the results suggest that the pulling rate can be tolerated, without the risk of mode hopping. Arm locking will be a valuable solution for the noise reduction in the space-borne GW detectors. We demonstrate that, with the precise control of the returned laser phase noise, the noise amplification in the science band can be efficiently suppressed based on the updated single arm locking. Not only our method allows the suppression of the peaks, the high gain, low pulling rate, it can also serve for full year, without the potential risk of locking failure due to the arm length mismatch. We finally discuss the unified demonstration of the updated single arm locking, where both the local and the returned laser phase noises can be tuned to generate the expected arm-locking sensor actually. Our work could provide a powerful method for the arm locking in the future space-borne GW detectors.
We describe a coherent mid-infrared continuum source with 700 cm-1 usable bandwidth, readily tuned within 600 - 2500 cm-1 (4 - 17 mum) and thus covering much of the infrared fingerprint molecular vibration region. It is based on nonlinear frequency conversion in GaSe using a compact commercial 100-fs-pulsed Er fiber laser system providing two amplified near-infrared beams, one of them broadened by a nonlinear optical fiber. The resulting collimated mid-infrared continuum beam of 1 mW quasi-cw power represents a coherent infrared frequency comb with zero carrier-envelope phase, containing about 500,000 modes that are exact multiples of the pulse repetition rate of 40 MHz. The beams diffraction-limited performance enables long-distance spectroscopic probing as well as maximal focusability for classical and ultraresolving near-field microscopies. Applications are foreseen also in studies of transient chemical phenomena even at ultrafast pump-probe scale, and in high-resolution gas spectroscopy for e.g. breath analysis.
We have developed a Watt-level single-frequency tunable fiber laser in the 915-937 nm spectral window. The laser is based on a neodymium-doped fiber master oscillator power amplifier architecture, with two amplification stages using a 20 mW extended cavity diode laser as seed. The system output power is higher than 2 W from 921 to 933 nm, with a stability better than 1.4 percent and a low relative intensity noise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا