Do you want to publish a course? Click here

Kinetic inductance detectors for millimeter and submillimeter astronomy / Detecteurs `a inductance cinetique pour lastronomie millimetrique et sub-millimetrique

126   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present recent developments in Kinetic Inductance Detectors (KID) for large arrays of detectors. The main application is ground-based millimeter wave astronomy. We focus in particular, as a case study, on our own experiment: NIKA (Neel IRAM KID Arrays). NIKA is today the best in-the-field experiment using KID-based instruments, and consists of a dual-band imaging system designed for the IRAM 30 meter telescope at Pico Veleta. We describe in this article, after a general context introduction, the KID working principle and the readout electronics, crucial to take advantage of the intrinsic KID multiplexability. We conclude with a small subset of the astronomical sources observed simultaneously at 2 mm and 1.4 mm by NIKA during the last run, held in October 2010. Nous decrivons les recents developpements concernant les grandes matrices de detecteurs `a inductance cinetique (KID) dont lapplication principale est lastronomie millimetrique au sol. Nous detaillons en particulier notre propre camera : NIKA (Neel IRAM KID Arrays) qui est aujourdhui linstrument le plus abouti mettant en oeuvre des KIDs. NIKA est une camera bi-bande conc{c}ue pour le radiotelescope de 30 m`etres de lIRAM `a Pico Veleta. Apres avoir decrit le contexte instrumental dans lequel ils sinscrivent, nous expliquerons le principe de fonctionnement des KIDs et de leur electronique de lecture, cruciale pour pouvoir tirer parti de leur potentiel de muliplexage. Pour finir, nous presentons quelques exemples dobservations effectuees par NIKA dans les bandes de 2 mm et 1,4 mm au cours de la derni`ere campagne dobservation en octobre 2010.



rate research

Read More

In Kinetic Inductance Detectors (KIDs) and other similar applications of superconducting microresonators, both the large and small-signal behaviour of the device may be affected by electrothermal feedback. Microwave power applied to read out the device is absorbed by and heats the superconductor quasiparticles, changing the superconductor conductivity and hence the readout power absorbed in a positive or negative feedback loop. In this work, we explore numerically the implications of an extensible theoretical model of a generic superconducting microresonator device for a typical KID, incorporating recent work on the power flow between superconductor quasiparticles and phonons. This model calculates the large-signal (changes in operating point) and small-signal behaviour of a device, allowing us to determine the effect of electrothermal feedback on device responsivity and noise characteristics under various operating conditions. We also investigate how thermally isolating the device from the bath, for example by designing the device on a membrane only connected to the bulk substrate by thin legs, affects device performance. We find that at a typical device operating point, positive electrothermal feedback reduces the effective thermal conductance from the superconductor quasiparticles to the bath, and so increases responsivity to signal (pair-breaking) power, increases noise from temperature fluctuations, and decreases the Noise Equivalent Power (NEP). Similarly, increasing the thermal isolation of the device while keeping the quasiparticle temperature constant decreases the NEP, but also decreases the device response bandwidth.
A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This paper presents the development of all aspects of the readout electronics for a KID-based instrument, which enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this paper had been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a instrument for the Caltech Submillimeter Observatory (CSO) between 2013 and 2015.
We designed, fabricated, and characterized four arrays of horn--coupled, lumped element kinetic inductance detectors (LEKIDs), optimized to work in the spectral bands of the balloon-borne OLIMPO experiment. OLIMPO is a 2.6 m aperture telescope, aimed at spectroscopic measurements of the Sunyaev-Zeldovich (SZ) effect. OLIMPO will also validate the LEKID technology in a representative space environment. The corrected focal plane is filled with diffraction limited horn-coupled KID arrays, with 19, 37, 23, 41 active pixels respectively at 150, 250, 350, and 460$:$GHz. Here we report on the full electrical and optical characterization performed on these detector arrays before the flight. In a dark laboratory cryostat, we measured the resonator electrical parameters, such as the quality factors and the electrical responsivities, at a base temperature of 300$:$mK. The measured average resonator $Q$s are 1.7$times{10^4}$, 7.0$times{10^4}$, 1.0$times{10^4}$, and 1.0$times{10^4}$ for the 150, 250, 350, and 460$:$GHz arrays, respectively. The average electrical phase responsivities on resonance are 1.4$:$rad/pW, 1.5$:$rad/pW, 2.1$:$rad/pW, and 2.1$:$rad/pW; the electrical noise equivalent powers are 45$:rm{aW/sqrt{Hz}}$, 160$:rm{aW/sqrt{Hz}}$, 80$:rm{aW/sqrt{Hz}}$, and 140$:rm{aW/sqrt{Hz}}$, at 12 Hz. In the OLIMPO cryostat, we measured the optical properties, such as the noise equivalent temperatures (NET) and the spectral responses. The measured NET$_{rm RJ}$s are $200:murm{Ksqrt{s}}$, $240:murm{Ksqrt{s}}$, $240:murm{Ksqrt{s}}$, and $:340murm{Ksqrt{s}}$, at 12 Hz; under 78, 88, 92, and 90 mK Rayleigh-Jeans blackbody load changes respectively for the 150, 250, 350, and 460 GHz arrays. The spectral responses were characterized with the OLIMPO differential Fourier transform spectrometer (DFTS) up to THz frequencies, with a resolution of 1.8 GHz.
Large ultra-sensitive detector arrays are needed for present and future observatories for far infra-red, submillimeter wave (THz), and millimeter wave astronomy. With increasing array size, it is increasingly important to control stray radiation inside the detector chips themselves, the surface wave. We demonstrate this effect with focal plane arrays of 880 lens-antenna coupled Microwave Kinetic Inductance Detectors (MKIDs). Presented here are near field measurements of the MKID optical response versus the position on the array of a reimaged optical source. We demonstrate that the optical response of a detector in these arrays saturates off-pixel at the $sim-30$ dB level compared to the peak pixel response. The result is that the power detected from a point source at the pixel position is almost identical to the stray response integrated over the chip area. With such a contribution, it would be impossible to measure extended sources, while the point source sensitivity is degraded due to an increase of the stray loading. However, we show that by incorporating an on-chip stray light absorber, the surface wave contribution is reduced by a factor $>$10. With the on-chip stray light absorber the point source response is close to simulations down to the $sim-35$ dB level, the simulation based on an ideal Gaussian illumination of the optics. In addition, as a crosscheck we show that the extended source response of a single pixel in the array with the absorbing grid is in agreement with the integral of the point source measurements.
To use highly resistive material for Kinetic Inductance Detectors (KID), new designs have to be done, in part due to the impedance match needed between the KID chip and the whole 50 ohms readout circuit. Chips from two new hybrid designs, with an aluminum throughline coupled to titanium nitride microresonators, have been measured and compared to a TiN only chip. In the hybrid chips, parasitic temperature dependent box resonances are absent. The dark KID properties have been measured in a large set of resonators. A surprisingly long lifetime, up to 5.6 ms is observed in a few KIDs. For the other more reproducible devices, the mean electrical Noise Equivalent Power is 5.4 10-19 W.Hz1/2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا