Do you want to publish a course? Click here

Statistical analysis of emotions and opinions at Digg website

95   0   0.0 ( 0 )
 Added by Julian Sienkiewicz
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

We performed statistical analysis on data from the Digg.com website, which enables its users to express their opinion on news stories by taking part in forum-like discussions as well as directly evaluate previous posts and stories by assigning so called diggs. Owing to fact that the content of each post has been annotated with its emotional value, apart from the strictly structural properties, the study also includes an analysis of the average emotional response of the posts commenting the main story. While analysing correlations at the story level, an interesting relationship between the number of diggs and the number of comments received by a story was found. The correlation between the two quantities is high for data where small threads dominate and consistently decreases for longer threads. However, while the correlation of the number of diggs and the average emotional response tends to grow for longer threads, correlations between numbers of comments and the average emotional response are almost zero. We also show that the initial set of comments given to a story has a substantial impact on the further life of the discussion: high negative average emotions in the first 10 comments lead to longer threads while the opposite situation results in shorter discussions. We also suggest presence of two different mechanisms governing the evolution of the discussion and, consequently, its length.



rate research

Read More

147 - J. Xie , J. Emenheiser , M. Kirby 2011
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the groups opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions $A$ and $B$, and constituting fractions $p_A$ and $p_B$ of the total population respectively, are present in the network. We show for stylized social networks (including ErdH{o}s-Renyi random graphs and Barabasi-Albert scale-free networks) that the phase diagram of this system in parameter space $(p_A,p_B)$ consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.
329 - M. Rosvall , K. Sneppen 2007
Social groups with widely different music tastes, political convictions, and religious beliefs emerge and disappear on scales from extreme subcultures to mainstream mass-cultures. Both the underlying social structure and the formation of opinions are dynamic and changes in one affect the other. Several positive feedback mechanisms have been proposed to drive the diversity in social and economic systems, but little effort has been devoted to pinpoint the interplay between a dynamically changing social network and the spread and gathering of information on the network. Here we analyze this phenomenon in terms of a social network-model that explicitly simulates the feedback between information assembly and emergence of social structures: changing beliefs are coupled to changing relationships because agents self-organize a dynamic network to facilitate their hunter-gatherer behavior in information space. Our analysis demonstrates that tribal organizations and modular social networks can emerge as a result of contact-seeking agents that reinforce their beliefs among like-minded. We also find that prestigious persons can streamline the social network into hierarchical structures around themselves.
In social networks, individuals constantly drop ties and replace them by new ones in a highly unpredictable fashion. This highly dynamical nature of social ties has important implications for processes such as the spread of information or of epidemics. Several studies have demonstrated the influence of a number of factors on the intricate microscopic process of tie replacement, but the macroscopic long-term effects of such changes remain largely unexplored. Here we investigate whether, despite the inherent randomness at the microscopic level, there are macroscopic statistical regularities in the long-term evolution of social networks. In particular, we analyze the email network of a large organization with over 1,000 individuals throughout four consecutive years. We find that, although the evolution of individual ties is highly unpredictable, the macro-evolution of social communication networks follows well-defined statistical patterns, characterized by exponentially decaying log-variations of the weight of social ties and of individuals social strength. At the same time, we find that individuals have social signatures and communication strategies that are remarkably stable over the scale of several years.
Social networks have been of much interest in recent years. We here focus on a network structure derived from co-occurrences of people in traditional newspaper media. We find three clear deviations from what can be expected in a random graph. First, the average degree in the empirical network is much lower than expected, and the average weight of a link much higher than expected. Secondly, high degree nodes attract disproportionately much weight. Thirdly, relatively much of the weight seems to concentrate between high degree nodes. We believe this can be explained by the fact that most people tend to co-occur repeatedly with the same people. We create a model that replicates these observations qualitatively based on two self-reinforcing processes: (1) more frequently occurring persons are more likely to occur again; and (2) if two people co-occur frequently, they are more likely to co-occur again. This suggest that the media tends to focus on people that are already in the news, and that they reinforce existing co-occurrences.
We analyze emotionally annotated massive data from IRC (Internet Relay Chat) and model the dialogues between its participants by assuming that the driving force for the discussion is the entropy growth of emotional probability distribution. This process is claimed to be correlated to the emergence of the power-law distribution of the discussion lengths observed in the dialogues. We perform numerical simulations based on the noticed phenomenon obtaining a good agreement with the real data. Finally, we propose a method to artificially prolong the duration of the discussion that relies on the entropy of emotional probability distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا