No Arabic abstract
Social groups with widely different music tastes, political convictions, and religious beliefs emerge and disappear on scales from extreme subcultures to mainstream mass-cultures. Both the underlying social structure and the formation of opinions are dynamic and changes in one affect the other. Several positive feedback mechanisms have been proposed to drive the diversity in social and economic systems, but little effort has been devoted to pinpoint the interplay between a dynamically changing social network and the spread and gathering of information on the network. Here we analyze this phenomenon in terms of a social network-model that explicitly simulates the feedback between information assembly and emergence of social structures: changing beliefs are coupled to changing relationships because agents self-organize a dynamic network to facilitate their hunter-gatherer behavior in information space. Our analysis demonstrates that tribal organizations and modular social networks can emerge as a result of contact-seeking agents that reinforce their beliefs among like-minded. We also find that prestigious persons can streamline the social network into hierarchical structures around themselves.
A model where agents show discrete behavior regarding their actions, but have continuous opinions that are updated by interacting with other agents is presented. This new updating rule is applied to both the voter and Sznajd models for interaction between neighbors and its consequences are discussed. The appearance of extremists is naturally observed and it seems to be a characteristic of this model.
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the groups opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions $A$ and $B$, and constituting fractions $p_A$ and $p_B$ of the total population respectively, are present in the network. We show for stylized social networks (including ErdH{o}s-Renyi random graphs and Barabasi-Albert scale-free networks) that the phase diagram of this system in parameter space $(p_A,p_B)$ consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.
We assume a community whose members adopt one of two opinions $A$ or $B$. Each member appears as an inflexible, or as a non-contrarian or contrarian floater. An inflexible sticks to its opinion, whereas a floater may change into a floater of the alternative opinion. The occurrence of this change is governed by the local majority rule: members meet in groups of a fixed size, and a floater then changes its opinion provided it is a minority in the group. Subsequently, a non-contrarian floater keeps the opinion as adopted under the local majority rule, whereas a contrarian floater adopts the alternative opinion. Whereas the effects of on the one hand inflexibles and on the other hand non-contrarians and contrarians have previously been studied seperately, the current approach allows us to gain insight in the effect of their combined presence in a community. Given fixed proportions of inflexibles $(alpha_{A}, alpha_{B})$ for the two opinions, and fixed fractions of contrarians $(gamma_{A}, gamma_{B})$ among the $A$ and $B$ floaters, we derive the update equation $p_{t+1}$ for the overall support for opinion $A$ at time $t+1$, given $p_{t}$. The update equation is derived respectively for local group sizes 1, 2 and 3. The associated dynamics generated by repeated local updates is then determined to identify its asymptotic steady configuration. The full opinion flow diagram is thus obtained, showing conditions in terms of the parameters for each opinion to eventually win the competing dynamics. Various dynamical scenarios are thus exhibited, and it is derived that relatively small densities of inflexibles allow for more variation in the qualitative outcome of the dynamics than higher densities of inflexibles.
Social systems are in a constant state of flux with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding spreading of influence or diseases, formation of friendships, and the productivity of teams. While there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the micro-dynamics of social networks. Here we explore the dynamic social network of a densely-connected population of approximately 1000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geo-location, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-minute time slices we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores are preceded by coordination behavior in the communication networks, and demonstrating that social behavior can be predicted with high precision.
In this work we study the coupled dynamics of social balance and opinion formation. We propose a model where agents form opinions under bounded confidence, but only considering the opinions of their friends. The signs of social ties -friendships and enmities- evolve seeking for social balance, taking into account how similar agents opinions are. We consider both the case where opinions have one and two dimensions. We find that our dynamics produces the segregation of agents into two cliques, with the opinions of agents in one clique differing from those in the other. Depending on the level of bounded confidence, the dynamics can produce either consensus of opinions within each clique or the coexistence of several opinion clusters in a clique. For the uni-dimensional case, the opinions in one clique are all below the opinions in the other clique, hence defining a left clique and a right clique. In the two-dimensional case, our numerical results suggest that the two cliques are separated by a hyperplane in the opinion space. We also show that the phenomenon of unidimensional opinions identified by DeMarzo, Vayanos and Zwiebel (Q J Econ 2003) extends partially to our dynamics. Finally, in the context of politics, we comment about the possible relation of our results to the fragmentation of an ideology and the emergence of new political parties.