Do you want to publish a course? Click here

Timing characterization of 100 GHz passively mode-locked discrete mode laser diodes

122   0   0.0 ( 0 )
 Added by Stephen O'Brien
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the characterization of the timing stability of passively mode-locked discrete mode diode laser sources. These are edge-emitting devices with a spatially varying refractive index profile for spectral filtering. Two devices with a mode-locking frequency of 100 GHz are characterized. The first device is designed to support a comb of six modes and generates near Fourier limited 1.9 ps pulses. The second supports four primary modes resulting in a sinusoidal modulation of the optical intensity. Using a cross-correlation technique, we measured a 20 fs pulse to pulse timing jitter for the first device, while, for the second device, a mode-beating (RF) linewidth of 1 MHz was measured using heterodyne mixing in a semiconductor optical amplifier. Comparison of these results with those obtained for an equivalent Fabry-Perot laser indicates that the spectral filtering mechanism employed does not adversely affect the timing properties of these passively mode-locked devices.



rate research

Read More

We study the effect of noise on the dynamics of passively mode-locked semiconductor lasers both experimentally and theoretically. A method combining analytical and numerical approaches for estimation of pulse timing jitter is proposed. We investigate how the presence of dynamical features such as wavelength bistability affects timing jitter.
Breathing solitons are nonlinear waves in which the energy concentrates in a localized and oscillatory fashion. Similarly to stationary solitons, breathers in dissipative systems can form stable bound states displaying molecule-like dynamics, which are frequently called breather molecules. So far, the experimental observation of optical breather molecules and the real-time detection of their dynamics have been limited to diatomic molecules, that is, bound states of only two breathers. In this work, we report on the observation of different types of breather complexes in a mode-locked fibre laser: multi-breather molecules, and molecular complexes originating from the binding of two breather-pair molecules or a breather pair molecule and a single breather. The inter-molecular temporal separation of the molecular complexes attains several hundreds of picoseconds, which is more than an order of magnitude larger than that of their stationary soliton counterparts and is a signature of long-range interactions. Numerical simulations of the laser model support our experimental findings. Moreover, non-equilibrium dynamics of breathing solitons are also observed, including breather collisions and annihilation. Our work opens the possibility of studying the dynamics of many-body systems in which breathers are the elementary constituents.
230 - L. M. Zhao , D. Y. Tang , 2009
We report on the observation of bound states of gain-guided solitons (GGSs) in a dispersion-managed erbium-doped fiber laser operating in the normal net cavity dispersion regime. Despite of the fact that the GGS is a chirped soliton and there is strong pulse stretching and compression along the cavity in the laser, the bound solitons observed have a fixed pulse separation, which is invariant to the pump strength change. Numerical simulation confirmed the experimental observations.
In this paper, we analyze the formation and dynamical properties of discrete light bullets (dLBs) in an array of passively mode-locked lasers coupled via evanescent fields in a ring geometry. Using a generic model based upon a system of nearest-neighbor coupled Haus master equations we show numerically the existence of dLBs for different coupling strengths. In order to reduce the complexity of the analysis, we approximate the full problem by a reduced set of discrete equations governing the dynamics of the transverse profile of the dLBs. This effective theory allows us to perform a detailed bifurcation analysis via path-continuation methods. In particular, we show the existence of multistable branches of discrete localized states (dLSs), corresponding to different number of active elements in the array. These branches are either independent of each other or are organized into a snaking bifurcation diagram where the width of the dLS grows via a process of successive increase and decrease of the gain. Mechanisms are revealed by which the snaking branches can be created and destroyed as a second parameter, e.g., the linewidth enhancement factor or the coupling strength are varied. For increasing couplings, the existence of moving bright and dark dLSs is also demonstrated.
We demonstrate sub-100-attosecond timing jitter optical pulse trains generated from free-running, 77.6-MHz repetition-rate, mode-locked Er-fiber lasers. At -0.002(pm0.001) ps2 net cavity dispersion, the rms timing jitter is 70 as (224 as) integrated from 10 kHz (1 kHz) to 38.8 MHz offset frequency, when measured by a 24-as-resolution balanced optical cross-correlator. To our knowledge, this result corresponds to the lowest rms timing jitter measured from any mode-locked fiber lasers so far. The measured result also agrees fairly well with the Namiki-Haus analytic model of quantum-limited timing jitter in stretched-pulse fiber lasers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا