Do you want to publish a course? Click here

Multipacting

78   0   0.0 ( 0 )
 Added by Renzo Parodi F.
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multipacting (MP) is a resonant electron discharge, often plaguing radiofrequency structures, produced by the synchronization of emitted electrons with the RF fields and by the electron multiplication at the impact point with the surface of the structure. The current of re-emitted electrons grows via true secondary re-emission when the secondary yield for the primary electron impact energy is greater than one. A simple example (MP in short-gap accelerating axial-symmetric cavities) allows an analytical solution of the equation of motion, giving both the synchronization (kinematics) and multiplication (impact energy) conditions as a function of the gap voltage (or accelerating field). Starting from this example a thorough discussion of MP discharges in axial-symmetric accelerating structures will be given and some poor mans rules are given to estimate the critical cavity field levels to meet the kinematic condition for resonance. The results of these poor mans rules are compared with computer simulations of MP discharges obtained by a statistical analysis of the re-emission yield for impinging electrons versus RF field level in the accelerating structure.



rate research

Read More

Superconducting RF (SRF) photo-injectors are one of the most promising devices for generating continuous wave (CW) electron beams with record high brightness. Ultra-high vacuum of SRF guns provides for long lifetime of the high quantum efficiency (QE) photocathodes, while SRF technology provides for high accelerating gradients exceeding 10 MV/m. It is especially true for low frequency SRF guns where electrons are generated at photocathodes at the crest of accelerating voltage. Two main physics challenges of SRF guns are their compatibility with high QE photocathodes and multipacting. The first is related to a possibility of deposition of photocathode materials (such as Cs) on the walls of the SRF cavity, which can result in increased dark current via reduction of the bulk Nb work function and in enhancing of a secondary electron emission yield (SEY). SEY plays critical role in multipacting, which could both spoil the gun vacuum and speed up the deposition of the cathode material on the walls of the SRF cavity. In short, the multipactor behavior in superconducting accelerating units must be well understood for successful operation of an SRF photo-injector. In this paper we present our studies of 1.2 MV 113 MHz quarter-wave SRF photo-injector serving as a source of electron beam for the Coherent electron Cooling experiment (CeC) at BNL. During three years of operating our SRF gun we encountered a number of multipacting zones. We also observed that presence of $textrm{CsK}_{2}textrm{Sb}$ photocathode in the gun could create additional multipacting barriers. We had conducted a comprehensive numerical and experimental study of the multipactor discharge in our SRF gun, and had developed a process of crossing the multipacting barriers from zero to the operational voltage without affecting the lifetime of our photocathode and enhancing the strength of multipacting barriers.
Transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic wave.
An extension of the TRIUMF M13 low-energy pion channel designed to suppress positrons based on an energy-loss technique is described. A source of beam channel momentum calibration from the decay pi+ --> e+ nu is also described.
For the SwissFEL project, an advanced high gradient low emittance gun is under development. Reliable operation with an electric field, preferably above 125 MV/m at a 4 mm gap, in the presence of an UV laser beam, has to be achieved in a diode configuration in order to minimize the emittance dilution due to space charge effects. In the first phase, a DC breakdown test stand was used to test different metals with different preparation methods at voltages up to 100 kV. In addition high gradient stability tests were also carried out over several days in order to prove reliable spark-free operation with a minimum dark current. In the second phase, electrodes with selected materials were installed in the 250 ns FWHM, 500 kV electron gun and tested for high gradient breakdown and for quantum efficiency using an ultra-violet laser.
The recently developed frequency extraction algorithm [G.R. Werner and J.R. Cary, J. Comp. Phys. 227, 5200 (2008)] that enables a simple FDTD algorithm to be transformed into an efficient eigenmode solver is applied to a realistic accelerator cavity modeled with embedded boundaries and Richardson extrapolation. Previously, the frequency extraction method was shown to be capable of distinguishing M degenerate modes by running M different simulations and to permit mode extraction with minimal post-processing effort that only requires solving a small eigenvalue problem. Realistic calculations for an accelerator cavity are presented in this work to establish the validity of the method for realistic modeling scenarios and to illustrate the complexities of the computational validation process. The method is found to be able to extract the frequencies with error that is less than a part in 10^5. The corrected experimental and computed values differ by about one parts in 10^$, which is accounted for (in largest part) by machining errors. The extraction of frequencies and modes from accelerator cavities provides engineers and physicists an understanding of potential cavity performance as it depends on shape without incurring manufacture and measurement costs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا