Do you want to publish a course? Click here

Validation of frequency and mode extraction calculations from time-domain simulations of accelerator cavities

115   0   0.0 ( 0 )
 Added by Leo Bellantoni
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recently developed frequency extraction algorithm [G.R. Werner and J.R. Cary, J. Comp. Phys. 227, 5200 (2008)] that enables a simple FDTD algorithm to be transformed into an efficient eigenmode solver is applied to a realistic accelerator cavity modeled with embedded boundaries and Richardson extrapolation. Previously, the frequency extraction method was shown to be capable of distinguishing M degenerate modes by running M different simulations and to permit mode extraction with minimal post-processing effort that only requires solving a small eigenvalue problem. Realistic calculations for an accelerator cavity are presented in this work to establish the validity of the method for realistic modeling scenarios and to illustrate the complexities of the computational validation process. The method is found to be able to extract the frequencies with error that is less than a part in 10^5. The corrected experimental and computed values differ by about one parts in 10^$, which is accounted for (in largest part) by machining errors. The extraction of frequencies and modes from accelerator cavities provides engineers and physicists an understanding of potential cavity performance as it depends on shape without incurring manufacture and measurement costs.



rate research

Read More

Photonic crystal (PhC) defect cavities that support an accelerating mode tend to trap unwanted higher-order modes (HOMs) corresponding to zero-group-velocity PhC lattice modes at the top of the bandgap. The effect is explained quite generally from photonic band and perturbation theoretical arguments. Transverse wakefields resulting from this effect are observed in a hybrid dielectric PhC accelerating cavity based on a triangular lattice of sapphire rods. These wakefields are, on average, an order of magnitude higher than those in the waveguide-damped Compact Linear Collider (CLIC) copper cavities. The avoidance of translational symmetry (and, thus, the bandgap concept) can dramatically improve HOM damping in PhC-based structures.
This paper presents the physical background for particle extraction from IHEP accelerator using short bent silicon crystals, analyses the results of the studies, considers in detail the regime of simultaneous work of crystal extraction and several internal targets. It is experimentally shown that the use of short crystals allows the extraction of beams with intensity of 10e12 proton/cycle with efficiency of 85%.
In this letter, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field - sensitivity - is observed for higher frequencies, in agreement with our theoretical model. Higher sensitivity is observed for N-doped cavities, which possess an intermediate value of electron mean-free-path, compared to 120 C and EP/BCP cavities. Experimental results from our study showed that the sensitivity has a non-monotonic trend as a function of the mean-free-path, including at frequencies other than 1.3 GHz, and that the vortex response to the rf field can be tuned from the pinning regime to flux-flow regime by manipulating the frequency and/or the mean-free-path of the resonator, as reported in our previous studies. The frequency dependence of the trapped flux sensitivity to the amplitude of the accelerating gradient is also highlighted.
128 - S. Posen , J. Lee , D.N. Seidman 2020
Nb3Sn is a promising next-generation material for superconducting radiofrequency cavities, with significant potential for both large scale and compact accelerator applications. However, so far, Nb3Sn cavities have been limited to cw accelerating fields <18 MV/m. In this paper, new results are presented with significantly higher fields, as high as 24 MV/m in single cell cavities. Results are also presented from the first ever Nb3Sn-coated 1.3 GHz 9-cell cavity, a full-scale demonstration on the cavity type used in production for the European XFEL and LCLS-II. Results are presented together with heat dissipation curves to emphasize the potential for industrial accelerator applications using cryocooler-based cooling systems. The cavities studied have an atypical shiny visual appearance, and microscopy studies of witness samples reveal significantly reduced surface roughness and smaller film thickness compared to typical Nb3Sn films for superconducting cavities. Possible mechanisms for increased maximum field are discussed as well as implications for physics of RF superconductivity in the low coherence length regime. Outlook for continued development is presented.
New crystal technique - array of bent strips and a fan-type reflector, based on thin straight plates - have been used for research of extraction and collimation a circulating beam in the U-70 accelerator at the energy 50 GeV and 1.3 GeV. It is shown, that new devices can effectively steer a beam in a wide energy range. For protons with energy 50 GeV efficiency of extraction and collimation about 90 % has been achieved which is record for this method. Reduction of particle losses in 2-3 times was observed also in accelerator at application of different crystals in comparison with the usual one-stage collimation scheme of beam with a steel absorber.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا