Do you want to publish a course? Click here

Sub-Poissonian photon statistics in a strongly coupled single-qubit laser

123   0   0.0 ( 0 )
 Added by Michael Marthaler
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate qubit lasing in the strong coupling limit. The qubit is given by a Cooper-pair box, and population inversion is established by an additional third state, which can be addressed via quasiparticle tunneling. The coupling strength between oscillator and qubit is assumed to be much higher than the quasiparticle tunneling rate. We find that the photon number distribution is sub-Poissonian in this strong coupling limit.



rate research

Read More

260 - Carlos Andres Vera , 2009
We present an approximate analytic expression for the photoluminescence spectral function of a model polariton system, which describes a quantum dot, with a finite number of fermionic levels, strongly interacting with the lowest photon mode of a pillar microcavity. Energy eigenvalues and wavefunctions of the electron-hole-photon system are obtained by numerically diagonalizing the Hamiltonian. Pumping and photon losses through the cavity mirrors are described with a master equation, which is solved in order to determine the stationary density matrix. The photon first-order correlation function, from which the spectral function is found, is computed with the help of the Quantum Regression Theorem. The spectral function qualitatively describes the polariton lasing regime in the model, corresponding to pumping rates two orders of magnitude lower than those needed for ordinary (photon) lasing. The second-order coherence functions for the photon and the electron-hole subsystems are computed as functions of the pumping rate.
Superconducting qubits acting as artificial two-level atoms allow for controlled variation of the symmetry properties which govern the selection rules for single and multiphoton excitation. We spectroscopically analyze a superconducting qubit-resonator system in the strong coupling regime under one- and two-photon driving. Our results provide clear experimental evidence for the controlled transition from an operating point governed by dipolar selection rules to a regime where one- and two-photon excitations of the artificial atom coexist. We find that the vacuum coupling between qubit and resonator can be straightforwardly extracted from the two-photon spectra where the detuned two-photon drive does not populate the relevant resonator mode significantly.
Population of a phononic mode coupled to a single-electron transistor in the sequential tunneling regime is discussed for the experimentally realistic case of intermediate electron-phonon coupling. Features like a sub-Poissonian bosonic distribution are found in regimes where electron transport drives the oscillator strongly out of equilibrium with only few phonon states selectively populated. The electron Fano factor is compared to fluctuations in the phonon distribution, showing that all possible combinations of sub- and super-Poissonian character can be realized.
We study the phenomena at the overlap of quantum chaos and nonclassical statistics for the time-dependent model of nonlinear oscillator. It is shown in the framework of Mandel Q-parameter and Wigner function that the statistics of oscillatory excitation number is drastically changed in order-to chaos transition. The essential improvement of sub-Poissonian statistics in comparison with an analogous one for the standard model of driven anharmonic oscillator is observed for the regular operational regime. It is shown that in the chaotic regime the system exhibits the range of sub- and super-Poissonian statistics which alternate one to other depending on time intervals. Unusual dependence of the variance of oscillatory number on the external noise level for the chaotic dynamics is observed.
In this work, we present a stand-alone and fiber-coupled quantum-light source. The plug-and-play device is based on an optically driven quantum dot delivering single photons via an optical fiber. The quantum dot is deterministically integrated in a monolithic microlens which is precisely coupled to the core of an optical fiber via active optical alignment and epoxide adhesive bonding. The rigidly coupled fiber-emitter assembly is integrated in a compact Stirling cryocooler with a base temperature of 35 K. We benchmark our practical quantum device via photon auto-correlation measurements revealing $g^{(2)}(0)=0.07 pm 0.05$ under continuous-wave excitation and we demonstrate triggered non-classical light at a repetition rate of 80 MHz. The long-term stability of our quantum light source is evaluated by endurance tests showing that the fiber-coupled quantum dot emission is stable within 4% over several successive cool-down/warm-up cycles. Additionally, we demonstrate non-classical photon emission for a user-intervention-free 100-hour test run and stable single-photon count rates up to 11.7 kHz with a standard deviation of 4%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا