Do you want to publish a course? Click here

Spin Non-commutativity and the Three-Dimensional Harmonic Oscillator

510   0   0.0 ( 0 )
 Added by Fernando Mendez
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

A three-dimensional harmonic oscillator with spin non-commutativity in the phase space is considered. The system has a regular symplectic structure and by using supersymmetric quantum mechanics techniques, the ground state is calculated exactly. We find that this state is infinitely degenerate and it has explicit spontaneous broken symmetry. Analyzing the Heisenberg equations, we show that the total angular momentum is conserved.



rate research

Read More

We consider a generalised non-commutative space-time in which non-commutativity is extended to all phase space variables. If strong enough, non-commutativity can affect stability of the system. We perform stability analysis on a couple of simple examples and show that a system can be stabilised by introducing quartic interactions provided they satisfy phase-space copositivity. In order to conduct perturbative analysis of these systems one can use either canonical methods or phase-space path integral methods which we present in some detail.
We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties.
The harmonic oscillator is the paragon of physical models; conceptually and computationally simple, yet rich enough to teach us about physics on scales that span classical mechanics to quantum field theory. This multifaceted nature extends also to its inverted counterpart, in which the oscillator frequency is analytically continued to pure imaginary values. In this article we probe the inverted harmonic oscillator (IHO) with recently developed quantum chaos diagnostics such as the out-of-time-order correlator (OTOC) and the circuit complexity. In particular, we study the OTOC for the displacement operator of the IHO with and without a non-Gaussian cubic perturbation to explore genuine and quasi scrambling respectively. In addition, we compute the full quantum Lyapunov spectrum for the inverted oscillator, finding a paired structure among the Lyapunov exponents. We also use the Heisenberg group to compute the complexity for the time evolved displacement operator, which displays chaotic behaviour. Finally, we extended our analysis to N-inverted harmonic oscillators to study the behaviour of complexity at the different timescales encoded in dissipation, scrambling and asymptotic regimes.
We study the bootstrap method in harmonic oscillators in one-dimensional quantum mechanics. We find that the problem reduces to the Diracs ladder operator problem and is exactly solvable. Thus, harmonic oscillators allow us to see how the bootstrap method works explicitly.
We examine the non-inertial effects of a rotating frame on a Dirac oscillator in a cosmic string space-time with non-commutative geometry in phase space. We observe that the approximate bound-state solutions are related to the biconfluent Heun polynomials. The related energies cannot be obtained in a closed form for all the bound states. We find the energy of the fundamental state analytically by taking into account the hard-wall confining condition. We describe how the ground-state energy scales with the new non-commutative term as well as with the other physical parameters of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا