Do you want to publish a course? Click here

Non-commutativity and non-inertial effects on the Dirac oscillator in a cosmic string space-time

162   0   0.0 ( 0 )
 Added by R. R. Cuzinatto
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the non-inertial effects of a rotating frame on a Dirac oscillator in a cosmic string space-time with non-commutative geometry in phase space. We observe that the approximate bound-state solutions are related to the biconfluent Heun polynomials. The related energies cannot be obtained in a closed form for all the bound states. We find the energy of the fundamental state analytically by taking into account the hard-wall confining condition. We describe how the ground-state energy scales with the new non-commutative term as well as with the other physical parameters of the system.



rate research

Read More

We study dynamics of a scalar field in the near-horizon region described by a static Klein-Gordon operator which is the Hamiltonian of the system. The explicite construction of a time operator near-horizon is given and its self-adjointness discussed.
We study the relativistic quantum dynamics of a DKP oscillator field subject to a linear interaction in cosmic string space-time in order to better understand the effects of gravitational fields produced by topological defects on the scalar field. We obtain the solution of DKP oscillator in the cosmic string background. Also, we solve it with an ansatz in presence of linear interaction. We obtain the eigenfunctions and the energy levels of the relativistic field in that background.
We consider dynamics of a quantum scalar field, minimally coupled to classical gravity, in the near-horizon region of a Schwarzschild black-hole. It is described by a static Klein-Gordon operator which in the near-horizon region reduces to a scale invariant Hamiltonian of the system. This Hamiltonian is not essentially self-adjoint, but it admits a one-parameter family of self-adjoint extension. The time-energy uncertainty relation, which can be related to the thermal black-hole mass fluctuations, requires explicit construction of a time operator near-horizon. We present its derivation in terms of generators of the affine group. Matrix elements involving the time operator should be evaluated in the affine coherent state representation.
The Dirac equation with both scalar and vector couplings describing the dynamics of a two-dimensional Dirac oscillator in the cosmic string spacetime is considered. We derive the Dirac-Pauli equation and solve it in the limit of the spin and the pseudo-spin symmetries. We analyze the presence of cylindrical symmetric scalar potentials which allows us to provide analytic solutions for the resultant field equation. By using an appropriate ansatz, we find that the radial equation is a biconfluent Heun-like differential equation. The solution of this equation provides us with more than one expression for the energy eigenvalues of the oscillator. We investigate these energies and find that there is a quantum condition between them. We study this condition in detail and find that it requires the fixation of one of the physical parameters involved in the problem. Expressions for the energy of the oscillator are obtained for some values of the quantum number $n$. Some particular cases which lead to known physical systems are also addressed.
In this paper we present exact solutions of the Dirac equation on the non-commutative plane in the presence of crossed electric and magnetic fields. In the standard commutative plane such a system is known to exhibit contraction of Landau levels when the electric field approaches a critical value. In the present case we find exact solutions in terms of the non-commutative parameters $eta$ (momentum non-commutativity) and $theta$ (coordinate non-commutativity) and provide an explicit expression for the Landau levels. We show that non-commutativity preserves the collapse of the spectrum. We provide a dual description of the system: (i) one in which at a given electric field the magnetic field is varied and the other (ii) in which at a given magnetic field the electric field is varied. In the former case we find that momentum non-commutativity ($eta$) splits the critical magnetic field into two critical fields while coordinates non-commutativity ($theta$) gives rise to two additional critical points not at all present in the commutative scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا