Do you want to publish a course? Click here

Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry

218   0   0.0 ( 0 )
 Added by Mikhail Plyushchay
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties.



rate research

Read More

Some aspects of the exotic particle, associated with the two-parameter central extension of the planar Galilei group are reviewed. A fundamental property is that it has non-commuting position coordinates. Other and generalized non-commutative models are also discussed. Minimal as well as anomalous coupling to an external electromagnetic field is presented. Supersymmetric extension is also considered. Exotic Galilean symmetry is also found in Moyal field theory. Similar equations arise for a semiclassical Bloch electron, used to explain the anomalous/spin/optical Hall effects.
We provide a systematic analysis of three-dimensional N = 2 extended Bargmann superalgebra and its Newton-Hooke, Lifshitz and Schrodinger extensions. These algebras admit invariant non-degenerate bi-linear forms which we utilized to construct corresponding Chern-Simons supergravity actions.
509 - H. Falomir , J. Gamboa , M. Loewe 2011
A three-dimensional harmonic oscillator with spin non-commutativity in the phase space is considered. The system has a regular symplectic structure and by using supersymmetric quantum mechanics techniques, the ground state is calculated exactly. We find that this state is infinitely degenerate and it has explicit spontaneous broken symmetry. Analyzing the Heisenberg equations, we show that the total angular momentum is conserved.
We construct finite- and infinite-dimensional non-relativistic extensions of the Newton-Hooke and Carroll (A)dS algebras using the algebra expansion method, starting from the (anti-)de Sitter relativistic algebra in D dimensions. These algebras are also shown to be embedded in different affine Kac-Moody algebras. In the three-dimensional case, we construct Chern-Simons actions invariant under these symmetries. This leads to a sequence of non-relativistic gravity theories, where the simplest examples correspond to extended Newton-Hooke and extended (post-)Newtonian gravity together with their Carrollian counterparts.
We show that it is in principle possible to construct dualities between commutative and non-commutative theories in a systematic way. This construction exploits a generalization of the exact renormalization group equation (ERG). We apply this to the simple case of the Landau problem and then generalize it to the free and interacting non-canonical scalar field theory. This constructive approach offers the advantage of tracking the implementation of the Lorentz symmetry in the non-commutative dual theory. In principle, it allows for the construction of completely consistent non-commutative and non-local theories where the Lorentz symmetry and unitarity are still respected, but may be implemented in a highly non-trivial and non-local manner.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا