Do you want to publish a course? Click here

Reconstructing the stellar mass distributions of galaxies using S4G IRAC 3.6 and 4.5 micron images: I. Correcting for contamination by PAH, hot dust, and intermediate age stars

183   0   0.0 ( 0 )
 Added by Sharon Meidt
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the aim of constructing accurate 2D maps of the stellar mass distribution in nearby galaxies from S4G 3.6 and 4.5 micron images, we report on the separation of the light from old stars from the emission contributed by contaminants (e.g. hot dust and the 3.3 micron PAH feature). Results for a small sample of six disk galaxies (NGC 1566, NGC 2976, NGC 3031, NGC 3184, NGC 4321, and NGC 5194) with a range of morphological properties, dust contents and star formation histories are presented to demonstrate our approach. We use an Independent Component Analysis (ICA) technique designed to separate statistically independent source distributions, maximizing the distinction in the [3.6]-[4.5] colors of the sources. The technique also removes emission from intermediate-age evolved red objects with a low mass-to-light ratio, such as asymptotic giant branch (AGB) and red supergiant (RSG) stars, revealing maps of the underlying old distribution of light with [3.6]-[4.5] colors consistent with the colors of K and M giants. Contaminants are identified via comparison to the non-stellar emission imaged at 8 microns, which is dominated by the broad PAH feature. Using the measured 3.6/8 micron ratio to select the individual contaminants, we find that hot dust and PAH together contribute between ~5-15% to the integrated light at 3.6 microns, while light from regions dominated by intermediate-age stars accounts for only 1-5%. Locally, however, the contribution from either contaminant can reach much higher levels; dust contributes on average 22% to the emission in star-forming regions throughout the sample, while intermediate age-stars contribute upwards of 50% in localized knots. The removal of these contaminants with ICA leaves maps of the old stellar disk that retain a high degree of structural information and are ideally suited for tracing the stellar mass, as will be the focus in a companion paper.



rate research

Read More

We present a new approach for estimating the 3.6 micron stellar mass-to-light ratio in terms of the [3.6]-[4.5] colors of old stellar populations. Our approach avoids several of the largest sources of uncertainty in existing techniques. By focusing on mid-IR wavelengths, we gain a virtually dust extinction-free tracer of the old stars, avoiding the need to adopt a dust model to correctly interpret optical or optical/NIR colors normally leveraged to assign M/L. By calibrating a new relation between NIR and mid-IR colors of GLIMPSE giant stars we also avoid discrepancies in model predictions for the [3.6]-[4.5] colors of old stellar populations due to uncertainties in molecular line opacities. We find that the [3.6]-[4.5] color, which is driven primarily by metallicity, provides a tight constraint on M/L_3.6, which varies intrinsically less than at optical wavelengths. The uncertainty on M/L_3.6 of ~0.07 dex due to unconstrained age variations marks a significant improvement on existing techniques for estimating the stellar M/L with shorter wavelength data. A single M/L_3.6=0.6 (assuming a Chabrier IMF), independent of [3.6]-[4.5] color, is also feasible as it can be applied simultaneously to old, metal-rich and young, metal-poor populations, and still with comparable (or better) accuracy (~0.1 dex) as alternatives. We expect our M/L_3.6 to be optimal for mapping the stellar mass distributions in S4G galaxies, for which we have developed an Independent Component Analysis technique to first isolate the old stellar light at 3.6 micron from non-stellar emission (e.g. hot dust and the 3.3 PAH feature). Our estimate can also be used to determine the fractional contribution of non-stellar emission to global (rest-frame) 3.6 micron fluxes, e.g. in WISE imaging, and establishes a reliable basis for exploring variations in the stellar IMF.
We use high spatial resolution maps of stellar mass and infrared flux of the Large Magellanic Cloud (LMC) to calibrate a conversion between 3.6 and 4.5 micron fluxes and stellar mass, M_* = 10^{5.65} * F_{3.6}^{2.85} * F_{4.5}^{-1.85} * (D/0.05)^2 M_solar, where fluxes are in Jy and D is the luminosity distance to the source in Mpc, and to provide an approximate empirical estimate of the fractional internal uncertainty in M_* of 0.3*sqrt{N/10^6}, where N is the number of stars in the region. We find evidence that young stars and hot dust contaminate the measurements, but attempts to remove this contamination using data that is far superior than what is generally available for unresolved galaxies resulted in marginal gains in accuracy. The scatter among mass estimates for regions in the LMC is comparable to that found by previous investigators when modeling composite populations, and so we conclude that our simple conversion is as precise as possible for the data and models currently available. Our results allow for a reasonably bottom-heavy initial mass function, such as Salpeter or heavier, and moderately disfavor light
350 - P.F.L. Maxted 2012
We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phase effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years.
231 - O. Vega , A. Bressan , P. Panuzzo 2010
We present the analysis of Spitzer-IRS spectra of four early-type galaxies, NGC 1297, NGC 5044, NGC 6868, and NGC 7079, all classified as LINERs in the optical bands. Their IRS spectra present the full series of H2 rotational emission lines in the range 5--38 microns, atomic lines, and prominent PAH features. We investigate the nature and origin of the PAH emission, characterized by unusually low 6 -- 9/11.3 microns inter-band ratios. After the subtraction of a passive early type galaxy template, we find that the 7 -- 9 microns spectral region requires dust features not normally present in star forming galaxies. Each spectrum is then analyzed with the aim of identifying their components and origin. In contrast to normal star forming galaxies, where cationic PAH emission prevails, our 6--14 microns spectra seem to be dominated by large and neutral PAH emission, responsible for the low 6 -- 9/11.3 microns ratios, plus two broad dust emission features peaking at 8.2 microns and 12 microns. Theses broad components, observed until now mainly in evolved carbon stars and usually attributed to pristine material, contribute approximately 30-50% of the total PAH flux in the 6--14 microns region. We propose that the PAH molecules in our ETGs arise from fresh carbonaceous material which is continuously released by a population of carbon stars, formed in a rejuvenation episode which occurred within the last few Gyr. The analysis of the MIR spectra allows us to infer that, in order to maintain the peculiar size and charge distributions biased to large and neutral PAHs, this material must be shocked, and excited by the weak UV interstellar radiation field of our ETG.
144 - P. A. Oesch 2012
We present a study of rest-frame UV-to-optical color distributions for z~4 galaxies based on the combination of deep HST/ACS+WFC3/IR data with Spitzer/IRAC imaging. In particular, we use new, ultra-deep data from the IRAC Ultradeep Field program (IUDF10). Our sample contains a total of ~2600 galaxies selected as B-dropout Lyman Break Galaxies (LBGs) in the HUDF and one of its deep parallel fields, the HUDF09-2, as well as GOODS-North and South. This sample is used to investigate the UV continuum slopes beta and Balmer break colors (J_125-[4.5]) as a function of rest-frame optical luminosity. The [4.5] filter is chosen to avoid potential contamination by strong rest-frame optical emission lines. We find that galaxies at M_z<-21.5 (roughly corresponding to L*[z~4]) are significantly redder than their lower luminosity counterparts. The UV continuum slopes and the J_125-[4.5] colors are well correlated. The most simple explanation for this correlation is that the dust reddening at these redshifts is better described by an SMC-like extinction curve, rather than the typically assumed Calzetti reddening. After correcting for dust, we find that the galaxy population shows mean stellar population ages in the range 10^8.5 to 10^9 yr, with a dispersion of ~0.5 dex, and only weak trends as a function of luminosity. In contrast to some results from the literature, we find that only a small fraction of galaxies shows Balmer break colors which are consistent with extremely young ages, younger than 100 Myr. Under the assumption of smooth star-formation histories, this fraction is only 12-19% for galaxies at M_z<-19.75. Our results are consistent with a gradual build-up of stars and dust in galaxies at z>4, with only a small fraction of stars being formed in short, intense bursts of star-formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا