Do you want to publish a course? Click here

Spitzer 3.6 micron and 4.5 micron full-orbit lightcurves of WASP-18

337   0   0.0 ( 0 )
 Added by Dr Pierre Maxted
 Publication date 2012
  fields Physics
and research's language is English
 Authors P.F.L. Maxted




Ask ChatGPT about the research

We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phase effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years.



rate research

Read More

We use high spatial resolution maps of stellar mass and infrared flux of the Large Magellanic Cloud (LMC) to calibrate a conversion between 3.6 and 4.5 micron fluxes and stellar mass, M_* = 10^{5.65} * F_{3.6}^{2.85} * F_{4.5}^{-1.85} * (D/0.05)^2 M_solar, where fluxes are in Jy and D is the luminosity distance to the source in Mpc, and to provide an approximate empirical estimate of the fractional internal uncertainty in M_* of 0.3*sqrt{N/10^6}, where N is the number of stars in the region. We find evidence that young stars and hot dust contaminate the measurements, but attempts to remove this contamination using data that is far superior than what is generally available for unresolved galaxies resulted in marginal gains in accuracy. The scatter among mass estimates for regions in the LMC is comparable to that found by previous investigators when modeling composite populations, and so we conclude that our simple conversion is as precise as possible for the data and models currently available. Our results allow for a reasonably bottom-heavy initial mass function, such as Salpeter or heavier, and moderately disfavor light
We report the detection of thermal emission at 4.5 and 8 micron from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its host star. By combining the resulting light curves with existing transit light curves and radial velocity measurements in a simultaneous analysis, we find the radius of WASP-17b to be 2.0 Rjup, which is 0.2 Rjup larger than any other known planet and 0.7 Rjup larger than predicted by the standard cooling theory of irradiated gas giant planets. We find the retrograde orbit of WASP-17b to be slightly eccentric, with 0.0012 < e < 0.070 (3 sigma). Such a low eccentricity suggests that, under current models, tidal heating alone could not have bloated the planet to its current size, so the radius of WASP-17b is currently unexplained. From the measured planet-star flux-density ratios we infer 4.5 and 8 micron brightness temperatures of 1881 +/- 50 K and 1580 +/- 150 K, respectively, consistent with a low-albedo planet that efficiently redistributes heat from its day side to its night side.
We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 micron bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 and 24 micron, these data allow us to characterize the exoplanets emission spectrum as a function of planetary longitude. We utilize improved methods for removing the effects of intrapixel sensitivity variations and accounting for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% +/- 0.0061% in the 3.6 micron band and 0.0982% +/- 0.0089% in the 4.5 micron band. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 micron, and we present new evidence indicating that the flux minimum observed in the 8 micron is likely caused by an over-shooting effect in the 8 micron array. We obtain improved estimates for HD 189733bs dayside planet-star flux ratio of 0.1466% +/- 0.0040% at 3.6 micron and 0.1787% +/- 0.0038% at 4.5 micron; these are the most accurate secondary eclipse depths obtained to date for an extrasolar planet. We compare our new dayside and nightside spectra for HD 189733b to the predictions of models from Burrows et al. (2008) and Showman et al. (2009). We find that HD 189733bs 4.5 micron nightside flux is 3.3 sigma smaller than predicted by the Showman et al. models, which assume that the chemistry is in local thermal equilibrium. We conclude that this discrepancy is best-explained by vertical mixing, which should lead to an excess of CO and correspondingly enhanced 4.5 micron absorption in this region. [abridged]
Aims. We observe occultations of WASP-24b to measure brightness temperatures and to determine whether or not its atmosphere exhibits a thermal inversion (stratosphere). Methods. We observed occultations of WASP-24b at 3.6 and 4.5 {mu}m using the Spitzer Space Telescope. It has been suggested that there is a correlation between stellar activity and the presence of
Context. Little is known about the properties of the warm (Tdust >~ 150 K) debris disk material located close to the central star, which has a more direct link to the formation of terrestrial planets than the low temperature debris dust that has been detected to date. Aims. To discover new warm debris disk candidates that show large 18 micron excess and estimate the fraction of stars with excess based on the AKARI/IRC Mid-Infrared All-Sky Survey data. Methods. We have searched for point sources detected in the AKARI/IRC All-Sky Survey, which show a positional match with A-M dwarf stars in the Tycho-2 Spectral Type Catalogue and exhibit excess emission at 18 micron compared to that expected from the Ks magnitude in the 2MASS catalogue. Results. We find 24 warm debris candidates including 8 new candidates among A-K stars. The apparent debris disk frequency is estimated to be 2.8 +/- 0.6%. We also find that A stars and solar-type FGK stars have different characteristics of the inner component of the identified debris disk candidates --- while debris disks around A stars are cooler and consistent with steady-state evolutionary model of debris disks, those around FGK stars tend to be warmer and cannot be explained by the steady-state model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا