Do you want to publish a course? Click here

Fast protocols for local implementation of bipartite nonlocal unitaries

231   0   0.0 ( 0 )
 Added by Li Yu
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In certain cases the communication time required to deterministically implement a nonlocal bipartite unitary using prior entanglement and LOCC (local operations and classical communication) can be reduced by a factor of two. We introduce two such fast protocols and illustrate them with various examples. For some simple unitaries, the entanglement resource is used quite efficiently. The problem of exactly which unitaries can be implemented by these two protocols remains unsolved, though there is some evidence that the set of implementable unitaries may expand at the cost of using more entanglement.



rate research

Read More

One way to diagnose chaos in bipartite unitary channels is via the tripartite information of the corresponding Choi state, which for certain choices of the subsystems reduces to the negative conditional mutual information (CMI). We study this quantity from a quantum information-theoretic perspective to clarify its role in diagnosing scrambling. When the CMI is zero, we find that the channel has a special normal form consisting of local channels between individual inputs and outputs. However, we find that arbitrarily low CMI does not imply arbitrary proximity to a channel of this form, although it does imply a type of approximate recoverability of one of the inputs. When the CMI is maximal, we find that the residual channel from an individual input to an individual output is completely depolarizing when the other input is maximally mixed. However, we again find that this result is not robust. We also extend some of these results to the multipartite case and to the case of Haar-random pure input states. Finally, we look at the relationship between tripartite information and its Renyi-2 version which is directly related to out-of-time-order correlation functions. In particular, we demonstrate an arbitrarily large gap between the two quantities.
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as mirror entanglement. They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary for the associated mirror entanglement to be faithful, i.e. to vanish on and only on separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the stellar mirror entanglement associated to traceless local unitaries with nondegenerate spectrum and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of [Giampaolo and Illuminati, Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension, and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
91 - Peter Bierhorst 2020
Many three-party correlations, including some that are commonly described as genuinely tripartite nonlocal, can be simulated by a network of underlying subsystems that display only bipartite nonsignaling nonlocal behavior. Quantum mechanics predicts three-party correlations that admit no such simulation, suggesting there a
69 - Scott M. Cohen 2016
We provide a method of designing protocols for implementing multipartite quantum measurements when the parties are restricted to local operations and classical communication (LOCC). For each finite integer number of rounds, $r$, the method succeeds in every case for which an $r$-round protocol exists for the measurement under consideration, and failure of the method has the immediate implication that the measurement under consideration cannot be implemented by LOCC no matter how many rounds of communication are allowed, including when the number of rounds is allowed to be infinite. It turns out that this method shows---often with relative ease---the impossibility by LOCC for a number of examples, including cases where this was not previously known, as well as the example that first demonstrated what has famously become known as nonlocality without entanglement.
A single-party strategy in a multi-round quantum protocol can be implemented by sequential networks of quantum operations connected by internal memories. Here provide the most efficient realization in terms of computational-space resources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا