No Arabic abstract
One way to diagnose chaos in bipartite unitary channels is via the tripartite information of the corresponding Choi state, which for certain choices of the subsystems reduces to the negative conditional mutual information (CMI). We study this quantity from a quantum information-theoretic perspective to clarify its role in diagnosing scrambling. When the CMI is zero, we find that the channel has a special normal form consisting of local channels between individual inputs and outputs. However, we find that arbitrarily low CMI does not imply arbitrary proximity to a channel of this form, although it does imply a type of approximate recoverability of one of the inputs. When the CMI is maximal, we find that the residual channel from an individual input to an individual output is completely depolarizing when the other input is maximally mixed. However, we again find that this result is not robust. We also extend some of these results to the multipartite case and to the case of Haar-random pure input states. Finally, we look at the relationship between tripartite information and its Renyi-2 version which is directly related to out-of-time-order correlation functions. In particular, we demonstrate an arbitrarily large gap between the two quantities.
In this paper, we study measures of quantum non-Markovianity based on the conditional mutual information. We obtain such measures by considering multiple parts of the total environment such that the conditional mutual information can be defined in this multipartite setup. The benefit of this approach is that the conditional mutual information is closely related to recovery maps and Markov chains; we also point out its relations with the change of distinguishability. We study along the way the properties of leaked information which is the conditional mutual information that can be back flowed, and we use this leaked information to show that the correlated environment is necessary for nonlocal memory effect.
Based on the monogamy of entanglement, we develop the technique of quantum conditioning to build an {it additive} entanglement measure: the conditional entanglement of mutual information. Its {it operational} meaning is elaborated to be the minimal net flow of qubits in the process of partial state merging. The result and conclusion can also be generalized to multipartite entanglement cases.
In this work, we consider an upper bound for the quantum mutual information in thermal states of a bipartite quantum system. This bound is related with the interaction energy and logarithm of the partition function of the system. We demonstrate the connection between this upper bound and the value of the mutual information for the bipartite system realized by two spin-1/2 particles in the external magnetic field with the XY-Heisenberg interaction.
We study the relation between the quantum conditional mutual information and the quantum $alpha$-Renyi divergences. Considering the totally antisymmetric state we show that it is not possible to attain a proper generalization of the quantum conditional mutual information by optimizing the distance in terms of quantum $alpha$-Renyi divergences over the set of all Markov states. The failure of the approach considered arises from the observation that a small quantum conditional mutual information does not imply that the state is close to a quantum Markov state.
In certain cases the communication time required to deterministically implement a nonlocal bipartite unitary using prior entanglement and LOCC (local operations and classical communication) can be reduced by a factor of two. We introduce two such fast protocols and illustrate them with various examples. For some simple unitaries, the entanglement resource is used quite efficiently. The problem of exactly which unitaries can be implemented by these two protocols remains unsolved, though there is some evidence that the set of implementable unitaries may expand at the cost of using more entanglement.