Do you want to publish a course? Click here

Entanglement quantification by local unitaries

143   0   0.0 ( 0 )
 Added by Fabrizio Illuminati
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as mirror entanglement. They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary for the associated mirror entanglement to be faithful, i.e. to vanish on and only on separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the stellar mirror entanglement associated to traceless local unitaries with nondegenerate spectrum and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of [Giampaolo and Illuminati, Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension, and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.



rate research

Read More

We give an introduction to the theory of multi-partite entanglement. We begin by describing the coordinate system of the field: Are we dealing with pure or mixed states, with single or multiple copies, what notion of locality is being used, do we aim to classify states according to their type of entanglement or to quantify it? Building on the general theory of multi-partite entanglement - to the extent that it has been achieved - we turn to explaining important classes of multi-partite entangled states, including matrix product states, stabilizer and graph states, bosonic and fermionic Gaussian states, addressing applications in condensed matter theory. We end with a brief discussion of various applications that rely on multi-partite entangled states: quantum networks, measurement-based quantum computing, non-locality, and quantum metrology.
Szegedy developed a generic method for quantizing classical algorithms based on random walks [Proceedings of FOCS, 2004, pp. 32-41]. A major contribution of his work was the construction of a walk unitary for any reversible random walk. Such unitary posses two crucial properties: its eigenvector with eigenphase $0$ is a quantum sample of the limiting distribution of the random walk and its eigenphase gap is quadratically larger than the spectral gap of the random walk. It was an open question if it is possible to generalize Szegedys quantization method for stochastic maps to quantum maps. We answer this in the affirmative by presenting an explicit construction of a Szegedy walk unitary for detailed balanced Lindbladians -- generators of quantum Markov semigroups -- and detailed balanced quantum channels. We prove that our Szegedy walk unitary has a purification of the fixed point of the Lindbladian as eigenvector with eigenphase $0$ and that its eigenphase gap is quadratically larger than the spectral gap of the Lindbladian. To construct the walk unitary we leverage a canonical form for detailed balanced Lindbladians showing that they are structurally related to Davies generators. We also explain how the quantization method for Lindbladians can be applied to quantum channels. We give an efficient quantum algorithm for quantizing Davies generators that describe many important open-system dynamics, for instance, the relaxation of a quantum system coupled to a bath. Our algorithm extends known techniques for simulating quantum systems on a quantum computer.
We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of hidden entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.
The problem of conditions on the initial correlations between the system and the environment that lead to completely positive (CP) or not-completely positive (NCP) maps has been studied by various authors. Two lines of study may be discerned: one concerned with families of initial correlations that induce CP dynamics under the application of an arbitrary joint unitary on the system and environment; the other concerned with specific initial states that may be highly entangled. Here we study the latter problem, and highlight the interplay between the initial correlations and the unitary applied. In particular, for almost any initial entangled state, one can furnish infinitely many joint unitaries that generate CP dynamics on the system. Restricting to the case of initial, pure entangled states, we obtain the scaling of the dimension of the set of these unitaries and show that it is of zero measure in the set of all possible interaction unitaries.
246 - F. Shahandeh , J. Sperling , 2014
We introduce an approach which allows a detailed structural and quantitative analysis of multipartite entanglement. The sets of states with different structures are convex and nested. Hence, they can be distinguished from each other using appropriate measurable witnesses. We derive equations for the construction of optimal witnesses and discuss general properties arising from our approach. As an example, we formulate witnesses for a 4-cluster state and perform a full quantitative analysis of the entanglement structure in the presence of noise and losses. The strength of the method in multimode continuous variable systems is also demonstrated by considering a dephased GHZ-type state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا