Do you want to publish a course? Click here

Holographic power-law traps for the efficient production of Bose-Einstein condensates

166   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use a phase-only spatial light modulator to generate light distributions in which the intensity decays as a power law from a central maximum, with order ranging from 2 (parabolic) to 0.5. We suggest that a sequence of these can be used as a time-dependent optical dipole trap for all-optical production of Bose-Einstein condensates in two stages: efficient evaporative cooling in a trap with adjustable strength and depth, followed by an adiabatic transformation of the trap order to cross the BEC transition in a reversible way. Realistic experimental parameters are used to verify the capability of this approach in producing larger Bose-Einstein condensates than by evaporative cooling alone.



rate research

Read More

We consider a two-component Bose-Einstein condensate (BEC) in a ring trap in a rotating frame, and show how to determine the response of such a configuration to being in a rotating frame, via accumulation of a Sagnac phase. This may be accomplished either through population oscillations, or the motion of spatial density fringes. We explicitly include the effect of interactions via a mean-field description, and study the fidelity of the dynamics relative to an ideal configuration.
We analyze free expansion of a trapped one-dimensional Bose gas after a sudden release from the confining trap potential. By using the stationary phase and local density approximations, we show that the long-time asymptotic density profile and the momentum distribution of the gas are determined by the initial distribution of Bethe rapidities (quasimomenta) and hence can be obtained from the solutions to the Lieb-Liniger equations in the thermodynamic limit. For expansion from a harmonic trap, and in the limits of very weak and very strong interactions, we recover the self-similar scaling solutions known from the hydrodynamic approach. For all other power-law traps and arbitrary interaction strengths, the expansion is not self-similar and shows strong dependence of the density profile evolution on the trap anharmonicity. We also characterize dynamical fermionization of the expanding cloud in terms of correlation functions describing phase and density fluctuations.
We investigate the mean--field equilibrium solutions for a two--species immiscible Bose--Einstein condensate confined by a harmonic confinement with additional linear perturbations. We observe a range of equilibrium density structures, including `ball and shell formations and axially/radially separated states, with a marked sensitivity to the potential perturbations and the relative atom number in each species. Incorporation of linear trap perturbations, albeit weak, are found to be essential to match the range of equilibrium density profiles observed in a recent Rb-87 - Cs-133 Bose-Einstein condensate experiment [D. J. McCarron et al., Phys. Rev. A, 84, 011603(R) (2011)]. Our analysis of this experiment demonstrates that sensitivity to linear trap perturbations is likely to be important factor in interpreting the results of similar experiments in the future.
419 - Amine Jaouadi 2009
We investigate theoretically an original route to achieve Bose-Einstein condensation using dark power-law laser traps. We propose to create such traps with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling their azimuthal order $ell$ allows for the exploration of a multitude of power-law trapping situations in one, two and three dimensions, ranging from the usual harmonic trap to an almost square-well potential, in which a quasi-homogeneous Bose gas can be formed. The usual cigar-shaped and disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take the generic form of a finger or of a hockey puck in such Laguerre-Gaussian traps. In addition, for a fixed atom number, higher transition temperatures are obtained in such configurations when compared with a harmonic trap of same volume. This effect, which results in a substantial acceleration of the condensation dynamics, requires a better but still reasonable focusing of the Laguerre-Gaussian beams.
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, therefore provides direct access to the degree of condensation and still recovers quantum correlations in an exact manner. We eventually initiate and establish this novel theory by deriving the respective universal functional $mathcal{F}$ for general homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most importantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory and a solution of the common phase dilemma of functional theories. We then illustrate this novel approach in several bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form of $mathcal{F}$ reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and more fundamental explanation for quantum depletion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا