Do you want to publish a course? Click here

Equilibrium solutions of immiscible two-species Bose-Einstein condensates in perturbed harmonic traps

145   0   0.0 ( 0 )
 Added by Robert Pattinson
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the mean--field equilibrium solutions for a two--species immiscible Bose--Einstein condensate confined by a harmonic confinement with additional linear perturbations. We observe a range of equilibrium density structures, including `ball and shell formations and axially/radially separated states, with a marked sensitivity to the potential perturbations and the relative atom number in each species. Incorporation of linear trap perturbations, albeit weak, are found to be essential to match the range of equilibrium density profiles observed in a recent Rb-87 - Cs-133 Bose-Einstein condensate experiment [D. J. McCarron et al., Phys. Rev. A, 84, 011603(R) (2011)]. Our analysis of this experiment demonstrates that sensitivity to linear trap perturbations is likely to be important factor in interpreting the results of similar experiments in the future.



rate research

Read More

The non-equilibrium spatial dynamics in a two-component Bose-Einstein condensate were excited by controlled miscible-immiscible transition, in which immiscible condensates with domain structures are transferred to the miscible condensates by changing the internal state of 87Rb atoms. The subsequent evolution exhibits the oscillation of spatial structures involving component mixing and separation. We show that the larger total energy of the miscible system results in a higher oscillation frequency. This investigation introduces a new technique to control the miscibility and the spatial degrees of freedom in atomic Bose-Einstein condensates.
We present the production of dual-species Bose-Einstein condensates of $^{39}mathrm{K}$ and $^{87}mathrm{Rb}$. Preparation of both species in the $left| F=1,m_F=-1 rightrangle$ state enabled us to exploit a total of three Fesh-bach resonances which allows for simultaneous Feshbach tuning of the $^{39}mathrm{K}$ intraspecies and the $^{39}mathrm{K}$-$^{87}mathrm{Rb}$ interspecies scattering length. Thus dual-species Bose-Einstein condensates were produced by sympathetic cooling of $^{39}mathrm{K}$ with $^{87}mathrm{Rb}$. A dark spontaneous force optical trap was used for $^{87}mathrm{Rb}$, to reduce the losses in $^{39}mathrm{K}$ due to light-assisted collisions in the optical trapping phase, which can be of benefit for other dual-species experiments. The tunability of the scattering length was used to perform precision spectroscopy of the interspecies Feshbach resonance located at $117.56(2),mathrm{G}$ and to determine the width of the resonance to $1.21(5),mathrm{G}$ by rethermalization measurements. The transition region from miscible to immiscible dual-species condensates was investigated and the interspecies background scattering length was determined to $28.5,a_mathrm{0}$ using an empirical model. This paves the way for dual-species experiments with $^{39}mathrm{K}$ and $^{87}mathrm{Rb}$ BECs ranging from molecular physics to precision metrology.
We consider a two-component Bose-Einstein condensate (BEC) in a ring trap in a rotating frame, and show how to determine the response of such a configuration to being in a rotating frame, via accumulation of a Sagnac phase. This may be accomplished either through population oscillations, or the motion of spatial density fringes. We explicitly include the effect of interactions via a mean-field description, and study the fidelity of the dynamics relative to an ideal configuration.
We theoretically investigate the one-dimensional dynamics of a dark soliton in a two-component immiscible mixture of Bose-Einstein condensates with repulsive interactions. We analyze the reflection and transmission of a soliton when it propagates through the domain wall, and we show that a dark-bright soliton can be dynamically generated by the interaction of the dark soliton with the domain wall, outside the regime of parameters where stationary solutions are known to exist. The dynamics of this dark-bright soliton is harmonic like, with a numerical frequency that is in good agreement with the predictions of a semi-analytical model.
We theoretically investigate a Bose-Einstein condensate confined by a rotating harmonic trap whose rotation axis is not aligned with any of its principal axes. The principal axes of the Thomas-Fermi density profiles of the resulting stationary solutions are found to be tilted with respect to those of the rotating trap, representing an extra degree of freedom that is associated with the existence of additional branches of stationary solutions for any given rotation axis alignment. By linearizing the time-dependent theory about the stationary states, we obtain a semi-analytical prediction of their dynamical instability at high rotation frequencies against collective modes arising from environmental perturbations. Comparing the stationary states to direct simulations of the Gross-Pitaevskii equation, we predict the nucleation of quantum vortices in the dynamically unstable rotational regime. These vortex lines are aligned along the rotation axis despite the tilting of the rotating trap although the background density profile is tilted with respect to the trapping and rotation axes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا