Do you want to publish a course? Click here

Bose-Einstein condensation in dark power-law laser traps

424   0   0.0 ( 0 )
 Added by Eric Charron
 Publication date 2009
  fields Physics
and research's language is English
 Authors Amine Jaouadi




Ask ChatGPT about the research

We investigate theoretically an original route to achieve Bose-Einstein condensation using dark power-law laser traps. We propose to create such traps with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling their azimuthal order $ell$ allows for the exploration of a multitude of power-law trapping situations in one, two and three dimensions, ranging from the usual harmonic trap to an almost square-well potential, in which a quasi-homogeneous Bose gas can be formed. The usual cigar-shaped and disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take the generic form of a finger or of a hockey puck in such Laguerre-Gaussian traps. In addition, for a fixed atom number, higher transition temperatures are obtained in such configurations when compared with a harmonic trap of same volume. This effect, which results in a substantial acceleration of the condensation dynamics, requires a better but still reasonable focusing of the Laguerre-Gaussian beams.



rate research

Read More

We use a phase-only spatial light modulator to generate light distributions in which the intensity decays as a power law from a central maximum, with order ranging from 2 (parabolic) to 0.5. We suggest that a sequence of these can be used as a time-dependent optical dipole trap for all-optical production of Bose-Einstein condensates in two stages: efficient evaporative cooling in a trap with adjustable strength and depth, followed by an adiabatic transformation of the trap order to cross the BEC transition in a reversible way. Realistic experimental parameters are used to verify the capability of this approach in producing larger Bose-Einstein condensates than by evaporative cooling alone.
325 - A Jaouadi , M Telmini 2015
In this reply we show that the criticisms raised by J. Noronha are based on a misapplication of the model we have proposed in [A. Jaouadi, M. Telmini, E. Charron, Phys. Rev. A 83, 023616 (2011)]. Here we explicitly discuss the range of validity of the approximations underlying our analytical model. We also show that the discrepancies pointed out for very small atom numbers and for very anisotropic traps are not surprising since these conditions exceed the range of validity of the model.
139 - V. A. Golovko 2010
To investigate the phenomenon of Bose-Einstein condensation in perfect crystals a hierarchy of equations for reduced density matrices that describes a thermodynamically equilibrium quantum system is employed, the hierarchy being obtained earlier by the author. The thermodynamics of a crystal with a condensate and the one of a crystal with no condensate are constructed in parallel, which is required for studying the phase transition involving Bose-Einstein condensation. The transition is analysed also with the help of the Landau theory of phase transitions which shows that a superfluid state can result either from two consecutive phase transitions or from only one. To demonstrate how the general equations obtained can be applied for a concrete crystal the bifurcation method for solving the equations is utilized. New results concerning properties of the condensate crystals at zero temperature are obtained as well. In the concluding section, the physical concept of the condensate is discussed.
Bose-Einstein condensation (BEC) of an ideal gas is investigated, beyond the thermodynamic limit, for a finite number $N$ of particles trapped in a generic three-dimensional power-law potential. We derive an analytical expression for the condensation temperature $T_c$ in terms of a power series in $x_0=epsilon_0/k_BT_c$, where $epsilon_0$ denotes the zero-point energy of the trapping potential. This expression, which applies in cartesian, cylindrical and spherical power-law traps, is given analytically at infinite order. It is also given numerically for specific potential shapes as an expansion in powers of $x_0$ up to the second order. We show that, for a harmonic trap, the well known first order shift of the critical temperature $Delta T_c/T_c propto N^{-1/3}$ is inaccurate when $N leqslant 10^{5}$, the next order (proportional to $N^{-1/2}$) being significant. We also show that finite size effects on the condensation temperature cancel out in a cubic trapping potential, e.g. $V(mathbi{r}) propto r^3$. Finally, we show that in a generic power-law potential of higher order, e.g. $V(mathbi{r}) propto r^alpha$ with $alpha > 3$, the shift of the critical temperature becomes positive. This effect provides a large increase of $T_c$ for relatively small atom numbers. For instance, an increase of about +40% is expected with $10^4$ atoms in a $V(mathbi{r}) propto r^{12}$ trapping potential.
We demonstrate a simple scheme to achieve fast, runaway evaporative cooling of optically trapped atoms by tilting the optical potential with a magnetic field gradient. Runaway evaporation is possible in this trap geometry due to the weak dependence of vibration frequencies on trap depth, which preserves atomic density during the evaporation process. Using this scheme, we show that Bose-Einstein condensation with ~10^5 cesium atoms can be realized in 2~4 s of forced evaporation. The evaporation speed and energetics are consistent with the three-dimensional evaporation picture, despite the fact that atoms can only leave the trap in the direction of tilt.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا