No Arabic abstract
In some protostellar objects both wide angle outflows and collimated jets are seen, while in others only one is observed. Spitzer provides unprecedented sensitivity in the infrared to study both the jet and outflow features. Here, we use HiRes deconvolution to improve the visualization of spatial morphology by enhancing resolution (to sub-arcsecond levels in the IRAC bands) and removing the contaminating sidelobes from bright sources. We apply this approach to study the jet and outflow features in Cep E a young, energetic Class 0 protostar. In the reprocessed images we detect: (i) wide angle outflow seen in scattered light; (ii) morphological details on at least 29 jet driven bow shocks and jet heads or knots; (iii) three compact features in 24 micron continuum image as atomic/ionic line emission coincident with the jet heads; and, (iv) a flattened 35 arcsec size protostellar envelope seen against the interstellar background PAH emission as an absorption band across the protostar at 8 micron. By separating the protostellar photospheric scattered emission in the wide angle cavity from the jet emission we show that we can study directly the scattered light spectrum. We present the H2 emission line spectra, as observed in all IRAC bands, for 29 knots in the jets and bowshocks and use them in the IRAC color -- color space as a diagnostic of the thermal gas in the shocks driven by the jets. The data presented here will enable detailed modeling of the individual shocks retracing the history of the episodic jet activity and the associated accretion on to the protostar. The Spitzer data analysis presented here shows the richness of its archive as a resource to study the jet/outflow features in H2 and scattered light in a large homogeneous sample.
We present new details of the structure and morphology of the jets and outflows in HH46/47 as seen in Spitzer infrared images from IRAC and MIPS, reprocessed using the ``HiRes deconvolution technique. HiRes improves the visualization of spatial morphology by enhancing resolution (to sub-arcsec levels in IRAC bands) and removing the contaminating side lobes from bright sources. In addition to sharper views of previously reported bow shocks, we have detected: (i) the sharply-delineated cavity walls of the wide-angle biconical outflow, seen in scattered light on both sides of the protostar, (ii) several very narrow jet features at distances 400 AU to 0.1 pc from the star, and, (iii) compact emissions at MIPS 24 micron coincident with the jet heads, tracing the hottest atomic/ionic gas in the bow shocks.
We present the analysis of 35.5 square degrees of images in the 1-0S(1) line of H2 from the UK Widefield Infrared Survey for H2 (UWISH2) towards Cassiopeia and Auriga. We have identified 98 Molecular Hydrogen emission-line Objects (MHOs) driven by Young Stellar Objects, 60% of which are bipolar outflows and all are new discoveries. We estimate that the UWISH2 extended emission object catalogue contains fewer than % false positives and is complete at the 95% level for jets and outflows brighter than the UWISH2 detection limit. We identified reliable driving source candidates for three quarters of the detected outflows, 40% of which are associated with groups and clusters of stars. The driving source candidates are 20% protostars, the remainder are CTTSs. We also identified 15 new star cluster candidates near MHOs in the survey area. We find that the typical outflow identified in the sample has the following characteristics: the position angles are randomly orientated; bipolar outflows are straight within a few degrees; the two lobes are slightly asymmetrical in length and brightness; the length and brightness of the lobes are not correlated; typical time gaps between major ejections of material are 1-3kyr, hence FU-Ori or EX-Ori eruptions are most likely not the cause of these, but we suggest MNors as a possible source. Furthermore, we find that outflow lobe length distributions are statistically different from the widely used total length distributions. There are a larger than expected number of bright outflows indicating that the flux distribution does not follow a power law.
To study the role of protosellar jets and outflows in the time evolution of the parent cores and the protostars, the astronomical community needs a large enough data base of infrared images of protostars at the highest spatial resolution possible, to reveal the details of their morphology. Spitzer provides unprecedented sensitivity in the infrared to study both the jet and outflow features, however its spatial resolution is limited by its 0.85m mirror. Here we use a high resolution deconvolution algorithm, HiRes, to improve the visualization of spatial morphology by enhancing resolution (to sub-arcsecond levels in the IRAC bands) and removing the contaminating sidelobes from bright sources in a sample of 89 protostellar objects. These reprocessed images are useful to detect: (i) wide angle outflow seen in scattered light; (ii) morphological details of H2 emission in jets and bow shocks; and (iii) compact features in MIPS 24 micron images as protostar/ disk and atomic/ionic line emissions associated with the jets. The HiRes fits image data of such a large homogeneous sample presented here will be useful to the community in studying these protostellar objects. To illustrate the utility of this HiRes sample, we show how the opening angle of the wide angle outflows in 31 sources, all observed in the HiRes processed Spitzer images, correlates with age. Our data suggest a power law fit to opening angle versus age with an exponent of ~0.32 and 0.02, respectively for ages less than 8000 yr and greater than 8000 yr.
We add 20, 6 and 3.6 cm wavelength VLA observations of two WATs, 1231+674 and 1433+553, to existing VLA data at 6 and 20 cm, in order to study the variations of spectral index as a function of position. We apply the spectral tomography process that we introduced in our analysis of 3C67, 3C190 and 3C449. Both spectral tomography and polarization maps indicate that there are two distinct extended components in each source. As in the case of 3C449, we find that each source has a flat spectrum jet surrounded by a steeper spectrum sheath. The steep components tend to be more highly polarized than the flat components. We discuss a number of possibilities for the dynamics of the jet/sheath systems, and the evolution of their relativistic electron populations. While the exact nature of these two coaxial components is still uncertain, their existence requires new models of jets in FR I sources and may also have implications for the dichotomy between FR Is and FR IIs.
We present 1-7 GHz high-resolution radio imaging (VLA and e-MERLIN) and spatially-resolved ionized gas kinematics for ten z<0.2 type~2 `obscured quasars (log [L(AGN)/(erg/s)]>~45) with moderate radio luminosities (log [L(1.4GHz)/(W/Hz)]=23.3-24.4). These targets were selected to have known ionized outflows based on broad [OIII] emission-line components (FWHM~800-1800 km/s). Although `radio-quiet and not `radio AGN by many traditional criteria, we show that for nine of the targets, star formation likely accounts for <~10 per cent of the radio emission. We find that ~80-90 per cent of these nine targets exhibit extended radio structures on 1-25 kpc scales. The quasars radio morphologies, spectral indices and position on the radio size-luminosity relationship reveals that these sources are consistent with being low power compact radio galaxies. Therefore, we favour radio jets as dominating the radio emission in the majority of these quasars. The radio jets we observe are associated with morphologically and kinematically distinct features in the ionized gas, such as increased turbulence and outflowing bubbles, revealing jet-gas interaction on galactic scales. Importantly, such conclusions could not have been drawn from current low-resolution radio surveys such as FIRST. Our observations support a scenario where compact radio jets, with modest radio luminosities, are a crucial feedback mechanism for massive galaxies during a quasar phase.