Do you want to publish a course? Click here

Spatial Structure of Stationary Nonequilibrium States in the Thermostatted Periodic Lorentz Gas

126   0   0.0 ( 0 )
 Added by Federico Bonetto
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate analytically and numerically the spatial structure of the non-equilibrium stationary states (NESS) of a point particle moving in a two dimensional periodic Lorentz gas (Sinai Billiard). The particle is subject to a constant external electric field E as well as a Gaussian thermostat which keeps the speed |v| constant. We show that despite the singular nature of the SRB measure its projections on the space coordinates are absolutely continuous. We further show that these projections satisfy linear response laws for small E. Some of them are computed numerically. We compare these results with those obtained from simple models in which the collisions with the obstacles are replaced by random collisions.Similarities and differences are noted.



rate research

Read More

130 - Ying-Jen Yang , Hong Qian 2021
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the overall fluctuations of the dynamics, representing the uncertainties in the past and in the future. A generalized Einstein relation is a consequence solely because the dynamics being stationary; and the Green-Kubo formula reflects a balance between the two mechanisms. Equilibrium with reversibility is characterized by a novel covariance symmetry.
129 - J. Kaidel , P. Winkler , M. Brack 2003
We investigate the resonance spectrum of the Henon-Heiles potential up to twice the barrier energy. The quantum spectrum is obtained by the method of complex coordinate rotation. We use periodic orbit theory to approximate the oscillating part of the resonance spectrum semiclassically and Strutinsky smoothing to obtain its smooth part. Although the system in this energy range is almost chaotic, it still contains stable periodic orbits. Using Gutzwillers trace formula, complemented by a uniform approximation for a codimension-two bifurcation scenario, we are able to reproduce the coarse-grained quantum-mechanical density of states very accurately, including only a few stable and unstable orbits.
153 - Carl P. Dettmann 2014
The Lorentz gas, a point particle making mirror-like reflections from an extended collection of scatterers, has been a useful model of deterministic diffusion and related statistical properties for over a century. This survey summarises recent results, including periodic and aperiodic models, finite and infinite horizon, external fields, smooth or polygonal obstacles, and in the Boltzmann-Grad limit. New results are given for several moving particles and for obstacles with flat points. Finally, a variety of applications are presented.
We consider analytical formulae that describe the chaotic regions around the main periodic orbit $(x=y=0)$ of the H{e}non map. Following our previous paper (Efthymiopoulos, Contopoulos, Katsanikas $2014$) we introduce new variables $(xi, eta)$ in which the product $xieta=c$ (constant) gives hyperbolic invariant curves. These hyperbolae are mapped by a canonical transformation $Phi$ to the plane $(x,y)$, giving Moser invariant curves. We find that the series $Phi$ are convergent up to a maximum value of $c=c_{max}$. We give estimates of the errors due to the finite truncation of the series and discuss how these errors affect the applicability of analytical computations. For values of the basic parameter $kappa$ of the H{e}non map smaller than a critical value, there is an island of stability, around a stable periodic orbit $S$, containing KAM invariant curves. The Moser curves for $c leq 0.32$ are completely outside the last KAM curve around $S$, the curves with $0.32<c<0.41$ intersect the last KAM curve and the curves with $0.41leq c< c_{max} simeq 0.49$ are completely inside the last KAM curve. All orbits in the chaotic region around the periodic orbit $(x=y=0)$, although they seem random, belong to Moser invariant curves, which, therefore define a structure of chaos. Orbits starting close and outside the last KAM curve remain close to it for a stickiness time that is estimated analytically using the series $Phi$. We finally calculate the periodic orbits that accumulate close to the homoclinic points, i.e. the points of intersection of the asymptotic curves from $x=y=0$, exploiting a method based on the self-intersections of the invariant Moser curves. We find that all the computed periodic orbits are generated from the stable orbit $S$ for smaller values of the H{e}non parameter $kappa$, i.e. they are all regular periodic orbits.
We consider a system of particles subjected to a uniform external force E and undergoing random collisions with virtual fixed obstacles, as in the Drude model of conductivity. The system is maintained in a nonequilibrium stationary state by a Gaussian thermostat. In a suitable limit the system is described by a self consistent Boltzmann equation for the one particle distribution function f. We find that after a long time f(v,t) approaches a stationary velocity distribution f(v) which vanishes for large speeds, i.e. f(v)=0 for |v|>vmax(E), with vmax(E)~1/|E| as |E| -> 0. In that limit f(v)~exp(-c|v|^3) for fixed v, where c depends on mean free path of the particle. f(v) is computed explicitly in one dimension.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا