Do you want to publish a course? Click here

Diffusion in the Lorentz gas

153   0   0.0 ( 0 )
 Added by Carl Dettmann
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Lorentz gas, a point particle making mirror-like reflections from an extended collection of scatterers, has been a useful model of deterministic diffusion and related statistical properties for over a century. This survey summarises recent results, including periodic and aperiodic models, finite and infinite horizon, external fields, smooth or polygonal obstacles, and in the Boltzmann-Grad limit. New results are given for several moving particles and for obstacles with flat points. Finally, a variety of applications are presented.



rate research

Read More

Consider a chaotic dynamical system generating Brownian motion-like diffusion. Consider a second, non-chaotic system in which all particles localize. Let a particle experience a random combination of both systems by sampling between them in time. What type of diffusion is exhibited by this {em random dynamical system}? We show that the resulting dynamics can generate anomalous diffusion, where in contrast to Brownian normal diffusion the mean square displacement of an ensemble of particles increases nonlinearly in time. Randomly mixing simple deterministic walks on the line we find anomalous dynamics characterised by ageing, weak ergodicity breaking, breaking of self-averaging and infinite invariant densities. This result holds for general types of noise and for perturbing nonlinear dynamics in bifurcation scenarios.
The scaling invariance for chaotic orbits near a transition from unlimited to limited diffusion in a dissipative standard mapping is explained via the analytical solution of the diffusion equation. It gives the probability of observing a particle with a specific action at a given time. We show the diffusion coefficient varies slowly with the time and is responsible to suppress the unlimited diffusion. The momenta of the probability are determined and the behavior of the average squared action is obtained. The limits of small and large time recover the results known in the literature from the phenomenological approach and, as a bonus, a scaling for intermediate time is obtained as dependent on the initial action. The formalism presented is robust enough and can be applied in a variety of other systems including time dependent billiards near a transition from limited to unlimited Fermi acceleration as we show at the end of the letter and in many other systems under the presence of dissipation as well as near a transition from integrability to non integrability.
This paper presents an {it ab initio} derivation of the expression given by irreversible thermodynamics for the rate of entropy production for different classes of diffusive processes. The first class are Lorentz gases, where non-interacting particles move on a spatially periodic lattice, and collide elastically with fixed scatterers. The second class are periodic systems where $N$ particles interact with each other, and one of them is a tracer particle which diffuses among the cells of the lattice. We assume that, in either case, the dynamics of the system is deterministic and hyperbolic, with positive Lyapunov exponents. This work extends methods originally developed for a chaotic two-dimensional model of diffusion, the multi-baker map, to higher dimensional, continuous time dynamical systems appropriate for systems with one or more moving particles. Here we express the rate of entropy production in terms of hydrodynamic measures that are determined by the fractal properties of microscopic hydrodynamic modes that describe the slowest decay of the system to an equilibrium state.
141 - R. Klages 2009
This is an easy-to-read introduction to foundations of deterministic chaos, deterministic diffusion and anomalous diffusion. The first part introduces to deterministic chaos in one-dimensional maps in form of Ljapunov exponents and dynamical entropies. The second part outlines the concept of deterministic diffusion. Then the escape rate formalism for deterministic diffusion, which expresses the diffusion coefficient in terms of the above two chaos quantities, is worked out for a simple map. Part three explains basics of anomalous diffusion by demonstrating the stochastic approach of continuous time random walk theory for an intermittent map. As an example of experimental applications, the anomalous dynamics of biological cell migration is discussed.
In this paper we study the breakdown of normal hyperbolicity and its consequences for reaction dynamics; in particular, the dividing surface, the flux through the dividing surface (DS), and the gap time distribution. Our approach is to study these questions using simple, two degree-of-freedom Hamiltonian models where calculations for the different geometrical and dynamical quantities can be carried out exactly. For our examples, we show that resonances within the normally hyperbolic invariant manifold may, or may not, lead to a `loss of normal hyperbolicity. Moreover, we show that the onset of such resonances results in a change in topology of the dividing surface, but does not affect our ability to define a DS. The flux through the DS varies continuously with energy, even as the energy is varied in such a way that normal hyperbolicity is lost. For our examples the gap time distributions exhibit singularities at energies corresponding to the existence of homoclinic orbits in the DS, but these singularities are not associated with loss of normal hyperbolicity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا