No Arabic abstract
We report observations of three rotational transitions of molecular oxygen (O2) in emission from the H2 Peak 1 position of vibrationally excited molecular hydrogen in Orion. We observed the 487 GHz, 774 GHz, and 1121 GHz lines using HIFI on the Herschel Space Observatory, having velocities of 11 km s-1 to 12 km s-1 and widths of 3 km s-1. The beam-averaged column density is N(O2) = 6.5times1016 cm-2, and assuming that the source has an equal beam filling factor for all transitions (beam widths 44, 28, and 19), the relative line intensities imply a kinetic temperature between 65 K and 120 K. The fractional abundance of O2 relative to H2 is 0.3 - 7.3times10-6. The unusual velocity suggests an association with a ~ 5 diameter source, denoted Peak A, the Western Clump, or MF4. The mass of this source is ~ 10 Modot and the dust temperature is geq 150 K. Our preferred explanation of the enhanced O2 abundance is that dust grains in this region are sufficiently warm (T geq 100 K) to desorb water ice and thus keep a significant fraction of elemental oxygen in the gas phase, with a significant fraction as O2. For this small source, the line ratios require a temperature geq 180 K. The inferred O2 column density simeq 5times1018 cm-2 can be produced in Peak A, having N(H2) simeq 4times1024 cm-2. An alternative mechanism is a low-velocity (10 to 15 km s-1) C-shock, which can produce N(O2) up to 1017 cm-2.
We present a comprehensive study of the deuterated molecules detected in the fullband HIFI survey of the Orion KL region. Ammonia, formaldehyde, and methanol and their singly deuterated isotopologues are each detected through numerous transitions in this survey with a wide range in optical depths and excitation conditions. In conjunction with a recent study of the abundance of HDO and H$_2$O in Orion KL, this study yields the best constraints on deuterium fractionation in an interstellar molecular cloud to date. As previous studies have found, both the Hot Core and Compact Ridge regions within Orion KL contain significant abundances of deuterated molecules, suggesting an origin in cold grain mantles. In the Hot Core, we find that ammonia is roughly a factor of 2 more fractionated than water. In the Compact Ridge, meanwhile, we find similar deuterium fractionation in water, formaldehyde, and methanol, with D/H ratios of (2---8) $times$ $10^{-3}$. The [CH$_2$DOH]/[CH$_3$OD] ratio in the Compact Ridge is found to be $1.2 pm 0.3$. The Hot Core generally has lower deuterium fractionation than the Compact Ridge, suggesting a slightly warmer origin, or a greater contribution from warm gas phase chemistry.
A key parameter to the description of all star formation processes is the density structure of the gas. In this letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until Av 3 (6), and a power-law tail for high column densities, consistent with a rho r^-2 profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at Av>1 for a subregion in Polaris that includes a prominent filament. We conclude that (i) the point where the PDF deviates from the lognormal form does not trace a universal Av-threshold for star formation, (ii) statistical density fluctuations, intermittency and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (iii) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (iv) external compression broadens the column density PDF, consistent with numerical simulations.
We have developed the first gas-grain chemical model for oxygen fractionation (also including sulphur fractionation) in dense molecular clouds, demonstrating that gas-phase chemistry generates variable oxygen fractionation levels, with a particularly strong effect for NO, SO, O2, and SO2. This large effect is due to the efficiency of the neutral 18O + NO, 18O + SO, and 18O + O2 exchange reactions. The modeling results were compared to new and existing observed isotopic ratios in a selection of cold cores. The good agreement between model and observations requires that the gas-phase abundance of neutral oxygen atoms is large in the observed regions. The S16O/S18O ratio is predicted to vary substantially over time showing that it can be used as a sensitive chemical proxy for matter evolution in dense molecular clouds.
We report the results of a search for molecular oxygen (O2) toward the Orion Bar, a prominent photodissociation region at the southern edge of the HII region created by the luminous Trapezium stars. We observed the spectral region around the frequency of the O2 N_J = 3_3 - 1_2 transition at 487 GHz and the 5_4 - 3_4 transition at 774 GHz using the Heterodyne Instrument for the Far Infrared on the Herschel Space Observatory. Neither line was detected, but the 3sigma upper limits established here translate to a total line-of-sight O2 column density < 1.5 10^16 cm^-2 for an emitting region whose temperature is between 30K and 250 K, or < 1 10^16 cm^-2 if the O2 emitting region is primarily at a temperature of ~< 100 K. Because the Orion Bar is oriented nearly edge-on relative to our line of sight, the observed column density is enhanced by a factor estimated to be between 4 and 20 relative to the face-on value. Our upper limits imply that the face-on O2 column density is less than 4 10^15 cm^-2, a value that is below, and possibly well below, model predictions for gas with a density of 10^4 - 10^5 cm^-3 exposed to a far ultraviolet flux 10^4 times the local value, conditions inferred from previous observations of the Orion Bar. The discrepancy might be resolved if: (1) the adsorption energy of O atoms to ice is greater than 800 K; (2) the total face-on Av of the Bar is less than required for O2 to reach peak abundance; (3) the O2 emission arises within dense clumps with a small beam filling factor; or, (4) the face-on depth into the Bar where O2 reaches its peak abundance, which is density dependent, corresponds to a sky position different from that sampled by our Herschel beams.
We have derived oxygen abundances for 8 galaxies from the Survey of HI in Extremely Low-mass Dwarfs (SHIELD). The SHIELD survey is an ongoing study of very low-mass galaxies, with M$_{rm HI}$ between 10$^{6.5}$ and 10$^{7.5}$ M$_{odot}$, that were detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. H$alpha$ images from the WIYN 3.5m telescope show that these 8 SHIELD galaxies each possess one or two active star-forming regions which were targeted with long-slit spectral observations using the Mayall 4m telescope at KPNO. We obtained a direct measurement of the electron temperature by detection of the weak [O III] $lambda$4363 line in 2 of the HII regions. Oxygen abundances for the other HII regions were estimated using a strong-line method. When the SHIELD galaxies are plotted on a B-band luminosity-metallicity diagram they appear to suggest a slightly shallower slope to the relationship than normally seen. However, that offset is systematically reduced when the near-infrared luminosity is used instead. This indicates a different mass-to-light ratio for the galaxies in this sample and we suggest this may be indicative of differing star-formation histories in the lowest luminosity and surface brightness dwarf irregulars.