Do you want to publish a course? Click here

Oxygen fractionation in dense molecular clouds

141   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed the first gas-grain chemical model for oxygen fractionation (also including sulphur fractionation) in dense molecular clouds, demonstrating that gas-phase chemistry generates variable oxygen fractionation levels, with a particularly strong effect for NO, SO, O2, and SO2. This large effect is due to the efficiency of the neutral 18O + NO, 18O + SO, and 18O + O2 exchange reactions. The modeling results were compared to new and existing observed isotopic ratios in a selection of cold cores. The good agreement between model and observations requires that the gas-phase abundance of neutral oxygen atoms is large in the observed regions. The S16O/S18O ratio is predicted to vary substantially over time showing that it can be used as a sensitive chemical proxy for matter evolution in dense molecular clouds.



rate research

Read More

105 - L. Colzi , O. Sipila , E. Roueff 2020
C-fractionation has been studied from a theoretical point of view with different models of time-dependent chemistry, including both isotope-selective photodissociation and low-temperature isotopic exchange reactions. Recent chemical models predict that the latter may lead to a depletion of $^{13}$C in nitrile-bearing species, with $^{12}$C/$^{13}$C ratios two times higher than the elemental abundance ratio of 68 in the local ISM. Since the carbon isotopic ratio is commonly used to evaluate the $^{14}$N/$^{15}$N ratios with the double-isotope method, it is important to study C-fractionation in detail to avoid incorrect assumptions. In this work we implemented a gas-grain chemical model with new isotopic exchange reactions and investigated their introduction in the context of dense and cold molecular gas. In particular, we investigated the $^{12}$C/$^{13}$C ratios of HNC, HCN, and CN using a grid of models, with temperatures and densities ranging from 10 to 50 K and 2$times$10$^{3}$ to 2$times$10$^{7}$ cm$^{-3}$, respectively. We suggest a possible $^{13}$C exchange through the $^{13}$C + C$_{3}$ $rightarrow$ $^{12}$C +$^{13}$CC$_{2}$ reaction, which does not result in dilution, but rather in $^{13}$C enhancement, for molecules formed starting from atomic carbon. This effect is efficient in a range of time between the formation of CO and its freeze-out on grains. Furthermore, we show that the $^{12}$C/$^{13}$C ratios of nitriles are predicted to be a factor 0.8-1.9 different from the local value of 68 for massive star-forming regions. This result also affects the $^{14}$N/$^{15}$N ratio: a value of 330 obtained with the double-isotope method is predicted to be 260-1150, depending on the physical conditions. Finally, we studied the $^{12}$C/$^{13}$C ratios by varying the cosmic-ray ionization rate: the ratios increase with it because of secondary photons and cosmic-ray reactions.
We investigated the chemical evolution of HC3N in six dense molecular clouds, using archival available data from the Herschel infrared Galactic Plane Survey (Hi-GAL) and the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90). Radio sky surveys of the Multi-Array Galactic Plane Imaging Survey (MAGPIS) and the Sydney University Molonglo Sky Survey (SUMSS) indicate these dense molecular clouds are associated with ultracompact HII (UCHII) regions and/or classical HII regions. We find that in dense molecular clouds associated with normal classical HII regions, the abundance of HC3N begins to decrease or reaches a plateau when the dust temperature gets hot. This implies UV photons could destroy the molecule of HC3N. On the other hand, in the other dense molecular clouds associated with UCHII regions, we find the abundance of HC3N increases with dust temperature monotonously, implying HC3N prefers to be formed in warm gas. We also find that the spectra of HC3N (10-9) in G12.804-0.199 and RCW 97 show wing emissions, and the abundance of HC3N in these two regions increases with its nonthermal velocity width, indicating HC3N might be a shock origin species. We further investigated the evolutionary trend of N(N2H+)/N(HC3N) column density ratio, and found this ratio could be used as a chemical evolutionary indicator of cloud evolution after the massive star formation is started.
193 - Alexei Ivlev 2015
The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and photoelectric emission from grains due to the UV radiation generated by CRs. The two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: While the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities $n(mathrm{H_2})$ between $sim10^4$ cm$^{-3}$ and $sim10^6$ cm$^{-3}$. The charging effect of CR is of generic nature, and therefore is expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary discs.
123 - L.E.Pirogov , I.I.Zinchenko 2009
We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high signal-to-noise ratios toward distinct positions in three selected objects in order to search for small-scale structure in molecular cloud cores associated with regions of high-mass star formation. In some cases, ripples were detected in the line profiles, which could be due to the presence of a large number of unresolved small clumps in the telescope beam. The number of clumps for regions with linear scales of ~0.2-0.5 pc is determined using an analytical model and detailed calculations for a clumpy cloud model; this number varies in the range: ~2 10^4-3 10^5, depending on the source. The clump densities range from ~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal energy of the gas in the model clumps is much higher than their gravitational energy. Their mean lifetimes can depend on the inter-clump collisional rates, and vary in the range ~10^4-10^5 yr. These structures are probably connected with density fluctuations due to turbulence in high-mass star-forming regions.
We present and analyze deep Herschel/HIFI observations of the [CII] 158um, [CI] 609um, and [CI] 370um lines towards 54 lines-of-sight (LOS) in the Large and Small Magellanic clouds. These observations are used to determine the physical conditions of the line--emitting gas, which we use to study the transition from atomic to molecular gas and from C^+ to C^0 to CO in their low metallicity environments. We trace gas with molecular fractions in the range 0.1<f(H2)<1, between those in the diffuse H2 gas detected by UV absorption (f(H2)<0.2) and well shielded regions in which hydrogen is essentially completely molecular. The C^0 and CO column densities are only measurable in regions with molecular fractions f(H2)>0.45 in both the LMC and SMC. Ionized carbon is the dominant gas-phase form of this element that is associated with molecular gas, with C^0 and CO representing a small fraction, implying that most (89% in the LMC and 77% in the SMC) of the molecular gas in our sample is CO-dark H2. The mean X_CO conversion factors in our LMC and SMC sample are larger than the value typically found in the Milky Way. When applying a correction based on the filling factor of the CO emission, we find that the values of X_CO in the LMC and SMC are closer to that in the Milky Way. The observed [CII] intensity in our sample represents about 1% of the total far-infrared intensity from the LOSs observed in both Magellanic Clouds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا