Do you want to publish a course? Click here

Oxygen Abundance Measurements of SHIELD Galaxies

173   0   0.0 ( 0 )
 Added by John M. Cannon
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have derived oxygen abundances for 8 galaxies from the Survey of HI in Extremely Low-mass Dwarfs (SHIELD). The SHIELD survey is an ongoing study of very low-mass galaxies, with M$_{rm HI}$ between 10$^{6.5}$ and 10$^{7.5}$ M$_{odot}$, that were detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. H$alpha$ images from the WIYN 3.5m telescope show that these 8 SHIELD galaxies each possess one or two active star-forming regions which were targeted with long-slit spectral observations using the Mayall 4m telescope at KPNO. We obtained a direct measurement of the electron temperature by detection of the weak [O III] $lambda$4363 line in 2 of the HII regions. Oxygen abundances for the other HII regions were estimated using a strong-line method. When the SHIELD galaxies are plotted on a B-band luminosity-metallicity diagram they appear to suggest a slightly shallower slope to the relationship than normally seen. However, that offset is systematically reduced when the near-infrared luminosity is used instead. This indicates a different mass-to-light ratio for the galaxies in this sample and we suggest this may be indicative of differing star-formation histories in the lowest luminosity and surface brightness dwarf irregulars.



rate research

Read More

We construct maps of the oxygen abundance distribution across the disks of 88 galaxies using CALIFA data release 2 (DR2) spectra. The position of the center of a galaxy (coordinates on the plate) were also taken from the CALIFA DR2. The galaxy inclination, the position angle of the major axis, and the optical radius were determined from the analysis of the surface brightnesses in the SDSS $g$ and $r$ bands of the photometric maps of SDSS data release 9. We explore the global azimuthal abundance asymmetry in the disks of the CALIFA galaxies and the presence of a break in the radial oxygen abundance distribution. We found that there is no significant global azimuthal asymmetry for our sample of galaxies, i.e., the asymmetry is small, usually lower than 0.05 dex. The scatter in oxygen abundances around the abundance gradient has a comparable value, $lesssim 0.05$ dex. A significant (possibly dominant) fraction of the asymmetry can be attributed to the uncertainties in the geometrical parameters of these galaxies. There is evidence for a flattening of the radial abundance gradient in the central part of 18 galaxies. We also estimated the geometric parameters (coordinates of the center, the galaxy inclination and the position angle of the major axis) of our galaxies from the analysis of the abundance map. The photometry-map-based and the abundance-map-based geometrical parameters are relatively close to each other for the majority of the galaxies but the discrepancy is large for a few galaxies with a flat radial abundance gradient.
We examine the possible dependence of the radial oxygen abundance distribution on non-axisymmetrical structures (bar/spirals) and other macroscopic parameters such as the mass, the optical radius R25, the color g-r, and the surface brightness of the galaxy. A sample of disk galaxies from the CALIFA DR3 is considered. We adopted the Fourier amplitude A2 of the surface brightness as a quantitative characteristic of the strength of non-axisymmetric structures in a galactic disk, in addition to the commonly used morphologic division for A, AB, and B types based on the Hubble classification. To distinguish changes in local oxygen abundance caused by the non-axisymmetrical structures, the multiparametric mass--metallicity relation was constructed as a function of parameters such as the bar/spiral pattern strength, the disk size, color index g-r in the SDSS bands, and central surface brightness of the disk. The gas-phase oxygen abundance gradient is determined by using the R calibration. We find that there is no significant impact of the non-axisymmetric structures such as a bar and/or spiral patterns on the local oxygen abundance and radial oxygen abundance gradient of disk galaxies. Galaxies with higher mass, however, exhibit flatter oxygen abundance gradients in units of dex/kpc, but this effect is significantly less prominent for the oxygen abundance gradients in units of dex/R25 and almost disappears when the inner parts are avoided. We show that the oxygen abundance in the central part of the galaxy depends neither on the optical radius R25 nor on the color g-r or the surface brightness of the galaxy. Instead, outside the central part of the galaxy, the oxygen abundance increases with g-r value and central surface brightness of the disk.
We determine the gas-phase oxygen abundance for a sample of 695 galaxies and H II regions with reliable detections of [O III]4363, using the temperature-sensitive Te method. Our aims are to estimate the validity of empirical methods such as R23, R23-P, log([N II]/Halpha) (N2), log[([O III]/Hbeta)/([N II]/Halpha)] (O3N2), and log([S II]/Halpha) (S2), and especially to re-derive (or add) the calibrations of R23, N2, O3N2 and S2 indices for oxygen abundances on the basis of this large sample of galaxies with Te-based abundances. We select 531 star-forming galaxies from the SDSS-DR4, and 164 galaxies and H II regions from literature for such study. Their (O/H) abundances obtained from Te are within 7.1<12+log(O/H)<8.5 mostly. For roughly half of the SDSS samples, the Bayesian abundances obtained by the MPA/JHU group are overestimated by ~0.34 dex compared with the Te-based (O/H) measurements, possibly due to the treatment of nitrogen enrichment in the models they used. R23 and R23-P methods systematically overestimate the O/H abundance by a factor of ~0.20 dex and ~0.06 dex, respectively. The N2 index, rather than the O3N2 index, provides relatively consistent O/H abundances with the Te-method, but with some scatter. The relations of N2, O3N2, S2 with log(O/H) are consistent with the photoionization model calculations of Kewley & Doptita (2002), but R23 does not match well. Then we derive analytical calibrations for O/H from R23, N2, O3N2 and S2 indices on the basis of this large sample of galaxies, especially including the excitation parameter P as an additional parameter in the N2 calibration. These can be used as calibration references in the future studies about metallicities of galaxies.
We use the EAGLE simulations to study the oxygen abundance gradients of gas discs in galaxies within the stellar mass range [10^9.5, 10^10.8]Mo at z=0. The estimated median oxygen gradient is -0.011 (0.002) dex kpc^-1, which is shallower than observed. No clear trend between simulated disc oxygen gradient and galaxy stellar mass is found when all galaxies are considered. However, the oxygen gradient shows a clear correlation with gas disc size so that shallower abundance slopes are found for increasing gas disc sizes. Positive oxygen gradients are detected for ~40 per cent of the analysed gas discs, with a slight higher frequency in low mass galaxies. Galaxies that have quiet merger histories show a positive correlation between oxygen gradient and stellar mass, so that more massive galaxies tend to have shallower metallicity gradients. At high stellar mass, there is a larger fraction of rotational-dominated galaxies in low density regions. At low stellar mass, non-merger galaxies show a large variety of oxygen gradients and morphologies. The normalization of the disc oxygen gradients in non-merger galaxies by the effective radius removes the trend with stellar mass. Conversely, galaxies that experienced mergers show a weak relation between oxygen gradient and stellar mass. Additionally, the analysed EAGLE discs show no clear dependence of the oxygen gradients on local environment, in agreement with current observational findings.
Motivated by the controversy over the surface metallicity of the Sun, we present a re-analysis of the solar photospheric oxygen (O) abundance. New atomic models of O and Ni are used to perform Non-Local Thermodynamic Equilibrium (NLTE) calculations with 1D hydrostatic (MARCS) and 3D hydrodynamical (Stagger and Bifrost) models. The Bifrost 3D MHD simulations are used to quantify the influence of the chromosphere. We compare the 3D NLTE line profiles with new high-resolution, R = 700 000, spatially-resolved spectra of the Sun obtained using the IAG FTS instrument. We find that the O I lines at 777 nm yield the abundance of log A(O) = 8.74 +/- 0.03 dex, which depends on the choice of the H-impact collisional data and oscillator strengths. The forbidden [O I] line at 630 nm is less model-dependent, as it forms nearly in LTE and is only weakly sensitive to convection. However, the oscillator strength for this transition is more uncertain than for the 777 nm lines. Modelled in 3D NLTE with the Ni I blend, the 630 nm line yields an abundance of log A(O) = 8.77 +/- 0.05 dex. We compare our results with previous estimates in the literature and draw a conclusion on the most likely value of the solar photospheric O abundance, which we estimate at log A(O) = 8.75 +/- 0.03 dex.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا