Do you want to publish a course? Click here

Resolving the CO Snow Line in the Disk around HD 163296

206   0   0.0 ( 0 )
 Added by Chunhua Qi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report Submillimeter Array (SMA) observations of CO (J=2--1, 3--2 and 6--5) and its isotopologues (13CO J=2--1, C18O J=2--1 and C17O J=3--2) in the disk around the Herbig Ae star HD 163296 at ~2 (250 AU) resolution, and interpret these data in the framework of a model that constrains the radial and vertical location of the line emission regions. First, we develop a physically self-consistent accretion disk model with an exponentially tapered edge that matches the spectral energy distribution and spatially resolved millimeter dust continuum emission. Then, we refine the vertical structure of the model using wide range of excitation conditions sampled by the CO lines, in particular the rarely observed J=6--5 transition. By fitting 13CO data in this structure, we further constrain the vertical distribution of CO to lie between a lower boundary below which CO freezes out onto dust grains (T ~ 19 K) and an upper boundary above which CO can be photodissociated (the hydrogen column density from the disk surface is ~ 10^{21} cm-2). The freeze-out at 19 K leads to a significant drop in the gas-phase CO column density beyond a radius of ~155 AU, a CO snow line that we directly resolve. By fitting the abundances of all CO isotopologues, we derive isotopic ratios of 12C/13C, 16O/18O and 18O/17O that are consistent with quiescent interstellar gas-phase values. This detailed model of the HD 163296 disk demonstrates the potential of a staged, parametric technique for constructing unified gas and dust structure models and constraining the distribution of molecular abundances using resolved multi-transition, multi-isotope observations.



rate research

Read More

The condensation fronts (snow lines) of H2O, CO and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substantially, based solely on CO emission profiles is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N2H+ J=3-2 and DCO+ J=4-3 emission lines toward the disk around the Herbig Ae star HD~163296 at ~0.5 (60 AU) resolution, and evaluate their utility as tracers of the CO snow line location. The N2H+ emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C18O data, which implies a sharp drop in CO abundance at 90 AU. Thus N2H+ appears to be a robust tracer of the midplane CO snow line. The DCO+ emission also has a ring morphology, but neither the inner nor the outer radius coincides with the CO snow line location of 90 AU, indicative of a complex relationship between DCO+ emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 vs. 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.
220 - D. Fedele , , S. Bruderer 2012
We present observations of far-infrared (50-200 micron) OH and H2O emission of the disk around the Herbig Ae star HD 163296 obtained with Herschel/PACS in the context of the DIGIT key program. In addition to strong [OI] emission, a number of OH doublets and a few weak highly excited lines of H2O are detected. The presence of warm H2O in this Herbig disk is confirmed by a line stacking analysis, enabled by the full PACS spectral scan, and by lines seen in Spitzer data. The line fluxes are analyzed using an LTE slab model including line opacity. The water column density is 10^14 - 10^15 cm^-2, and the excitation temperature is 200-300 K implying warm gas with a density n > 10^5 cm^-3. For OH we find a column density of 10^14 - 2x10^15 cm^-2 and T_ex ~ 300-500 K. For both species we find an emitting region of r ~ 15-20 AU from the star. We argue that the molecular emission arises from the protoplanetary disk rather than from an outflow. This far-infrared detection of both H2O and OH contrasts with near- and mid-infrared observations, which have generally found a lack of water in the inner disk around Herbig AeBe stars due to strong photodissociation of water. Given the similarity in column density and emitting region, OH and H2O emission seems to arise from an upper layer of the disk atmosphere of HD 163296, probing a new reservoir of water. The slightly lower temperature of H2O compared to OH suggests a vertical stratification of the molecular gas with OH located higher and water deeper in the disk, consistent with thermo-chemical models.
151 - G. Guidi , M. Tazzari , L. Testi 2016
To characterize the mechanisms of planet formation it is crucial to investigate the properties and evolution of protoplanetary disks around young stars, where the initial conditions for the growth of planets are set. Our goal is to study grain growth in the disk of the young, intermediate mass star HD163296 where dust processing has already been observed, and to look for evidence of growth by ice condensation across the CO snowline, already identified in this disk with ALMA. Under the hypothesis of optically thin emission we compare images at different wavelengths from ALMA and VLA to measure the opacity spectral index across the disk and thus the maximum grain size. We also use a Bayesian tool based on a two-layer disk model to fit the observations and constrain the dust surface density. The measurements of the opacity spectral index indicate the presence of large grains and pebbles ($geq$1 cm) in the inner regions of the disk (inside $sim$50 AU) and smaller grains, consistent with ISM sizes, in the outer disk (beyond 150 AU). Re-analysing ALMA Band 7 Science Verification data we find (radially) unresolved excess continuum emission centered near the location of the CO snowline at $sim$90 AU. Our analysis suggests a grain size distribution consistent with an enhanced production of large grains at the CO snowline and consequent transport to the inner regions. Our results combined with the excess in infrared scattered light found by Garufi et al. (2014) suggests the presence of a structure at 90~AU involving the whole vertical extent of the disk. This could be evidence for small scale processing of dust at the CO snowline.
Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks around low-mass stars, especially when it comes to spatially resolved observations. We present new VLT/SPHERE IRDIS Dual-Polarization Imaging (DPI) observations in which we detect the dust ring around the M2 spectral type star TWA,7. Combined with additional Angular Differential Imaging observations we aim at a fine characterization of the debris disk and setting constraints on the presence of low-mass planets. We model the SPHERE DPI observations and constrain the location of the small dust grains, as well as the spectral energy distribution of the debris disk, using the results inferred from the observations, and perform simple N-body simulations. We find that the dust density distribution peaks at 25 au, with a very shallow outer power-law slope, and that the disk has an inclination of 13 degrees with a position angle of 90 degrees East of North. We also report low signal-to-noise detections of an outer belt at a distance of ~52 au from the star, of a spiral arm in the Southern side of the star, and of a possible dusty clump at 3.9 au. These findings seem to persist over timescales of at least a year. Using the intensity images, we do not detect any planets in the close vicinity of the star, but the sensitivity reaches Jovian planet mass upper limits. We find that the SED is best reproduced with an inner disk at 7 au and another belt at 25 au. We report the detections of several unexpected features in the disk around TWA,7. A yet undetected 100 M$_oplus$ planet with a semi-major axis at 20-30 au could possibly explain the outer belt as well as the spiral arm. We conclude that stellar winds are unlikely to be responsible for the spiral arm.
Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of snow lines of abundant volatiles. We present chemical imaging of the CO snow line in the disk around TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array (ALMA) observations of N2H+, a reactive ion present in large abundance only where CO is frozen out. The N2H+ emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ~ 30 AU helps to assess models of the formation dynamics of the Solar System, when combined with measurements of the bulk composition of planets and comets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا