No Arabic abstract
Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks around low-mass stars, especially when it comes to spatially resolved observations. We present new VLT/SPHERE IRDIS Dual-Polarization Imaging (DPI) observations in which we detect the dust ring around the M2 spectral type star TWA,7. Combined with additional Angular Differential Imaging observations we aim at a fine characterization of the debris disk and setting constraints on the presence of low-mass planets. We model the SPHERE DPI observations and constrain the location of the small dust grains, as well as the spectral energy distribution of the debris disk, using the results inferred from the observations, and perform simple N-body simulations. We find that the dust density distribution peaks at 25 au, with a very shallow outer power-law slope, and that the disk has an inclination of 13 degrees with a position angle of 90 degrees East of North. We also report low signal-to-noise detections of an outer belt at a distance of ~52 au from the star, of a spiral arm in the Southern side of the star, and of a possible dusty clump at 3.9 au. These findings seem to persist over timescales of at least a year. Using the intensity images, we do not detect any planets in the close vicinity of the star, but the sensitivity reaches Jovian planet mass upper limits. We find that the SED is best reproduced with an inner disk at 7 au and another belt at 25 au. We report the detections of several unexpected features in the disk around TWA,7. A yet undetected 100 M$_oplus$ planet with a semi-major axis at 20-30 au could possibly explain the outer belt as well as the spiral arm. We conclude that stellar winds are unlikely to be responsible for the spiral arm.
Debris disks offer valuable insights into the latest stages of circumstellar disk evolution, and can possibly help us to trace the outcomes of planetary formation processes. In the age range 10 to 100,Myr, most of the gas is expected to have been removed from the system, giant planets (if any) must have already been formed, and the formation of terrestrial planets may be on-going. Pluto-sized planetesimals, and their debris released in a collisional cascade, are under their mutual gravitational influence, which may result into non-axisymmetric structures in the debris disk. High angular resolution observations are required to investigate these effects and constrain the dynamical evolution of debris disks. Furthermore, multi-wavelength observations can provide information about the dust dynamics by probing different grain sizes. Here we present new VLT/SPHERE and ALMA observations of the debris disk around the 40,Myr-old solar-type star HD,61005. We resolve the disk at unprecedented resolution both in the near-infrared (in scattered and polarized light) and at millimeter wavelengths. Thanks to the new observations, we propose a solution for both the radial and azimuthal distribution of the dust grains in the debris disk. We find that the disk has a moderate eccentricity ($e sim 0.1$) and that the dust density is two times larger at the pericenter compared to the apocenter. With no giant planets detected in our observations, we investigate alternative explanations besides planet-disk interactions to interpret the inferred disk morphology. We postulate that the morphology of the disk could be the consequence of a massive collision between $sim$,1000,km-sized bodies at $sim$,61,au. If this interpretation holds, it would put stringent constraints on the formation of massive planetesimals at large distances from the star.
Debris disks are the natural by-products of the planet formation process. Scattered or polarized light observations are mostly sensitive to small dust grains that are released from the grinding down of bigger planetesimals. High angular resolution observations at optical wavelengths can provide key constraints on the radial and azimuthal distribution of the small dust grains. These constraints can help us better understand where most of the dust grains are released upon collisions. We present SPHERE/ZIMPOL observations of the debris disk around HR 4796 A, and model the radial profiles along several azimuthal angles of the disk with a code that accounts for the effect of stellar radiation pressure. This enables us to derive an appropriate description for the radial and azimuthal distribution of the small dust grains. Even though we only model the radial profiles along (or close to) the semi-major axis of the disk, our best-fit model is not only in good agreement with our observations but also with previously published datasets (from near-IR to sub-mm wavelengths). We find that the reference radius is located at $76.4pm0.4$ au, and the disk has an eccentricity of $0.076_{-0.010}^{+0.016}$, with the pericenter located on the front side of the disk (north of the star). We find that small dust grains must be preferentially released near the pericenter to explain the observed brightness asymmetry. Even though parent bodies spend more time near the apocenter, the brightness asymmetry implies that collisions happen more frequently near the pericenter of the disk. Our model can successfully reproduce the shape of the outer edge of the disk, without having to invoke an outer planet shepherding the debris disk. With a simple treatment of the effect of the radiation pressure, we conclude that the parent planetesimals are located in a narrow ring of about $3.6$ au in width.
We report Submillimeter Array (SMA) observations of CO (J=2--1, 3--2 and 6--5) and its isotopologues (13CO J=2--1, C18O J=2--1 and C17O J=3--2) in the disk around the Herbig Ae star HD 163296 at ~2 (250 AU) resolution, and interpret these data in the framework of a model that constrains the radial and vertical location of the line emission regions. First, we develop a physically self-consistent accretion disk model with an exponentially tapered edge that matches the spectral energy distribution and spatially resolved millimeter dust continuum emission. Then, we refine the vertical structure of the model using wide range of excitation conditions sampled by the CO lines, in particular the rarely observed J=6--5 transition. By fitting 13CO data in this structure, we further constrain the vertical distribution of CO to lie between a lower boundary below which CO freezes out onto dust grains (T ~ 19 K) and an upper boundary above which CO can be photodissociated (the hydrogen column density from the disk surface is ~ 10^{21} cm-2). The freeze-out at 19 K leads to a significant drop in the gas-phase CO column density beyond a radius of ~155 AU, a CO snow line that we directly resolve. By fitting the abundances of all CO isotopologues, we derive isotopic ratios of 12C/13C, 16O/18O and 18O/17O that are consistent with quiescent interstellar gas-phase values. This detailed model of the HD 163296 disk demonstrates the potential of a staged, parametric technique for constructing unified gas and dust structure models and constraining the distribution of molecular abundances using resolved multi-transition, multi-isotope observations.
We present Subaru/HiCIAO H-band high-contrast images of the debris disk around HIP 79977, whose pres- ence was recently inferred from an infrared excess. Our images resolve the disk for the first time, allowing characterization of its shape, size, and dust grain properties. We use angular differential imaging (ADI) to reveal the disk geometry in unpolarized light out to a radius of ~2, as well as polarized differential imaging (PDI) to measure the degree of scattering polarization out to ~1.5. In order to strike a favorable balance between suppression of the stellar halo and conservation of disk flux, we explore the application of principal component analysis (PCA) to both ADI and reference star subtraction. This allows accurate forward modeling of the effects of data reduction on simulated disk images, and thus direct comparison with the imaged disk. The resulting best-fit values and well-fitting intervals for the model parameters are a surface brightness power-law slope of S_out = -3.2 [-3.6,-2.9], an inclination of i = 84{deg} [81{deg},86{deg}], a high Henyey-Greenstein forward-scattering parameter of g = 0.45 [0.35, 0.60], and a non-significant disk-star offset of u = 3.0 [-1.5, 7.5] AU = 24 [-13, 61] mas along the line of nodes. Furthermore, the tangential linear polarization along the disk rises from ~10% at 0.5 to ~45% at 1.5. These measurements paint a consistent picture of a disk of dust grains produced by collisional cascades and blown out to larger radii by stellar radiation pressure.
Debris disks are tenuous, dusty belts surrounding main sequence stars generated by collisions between planetesimals. HD 206893 is one of only two stars known to host a directly imaged brown dwarf orbiting interior to its debris ring, in this case at a projected separation of 10.4 au. Here we resolve structure in the debris disk around HD 206893 at an angular resolution of 0.6 (24 au) and wavelength of 1.3 mm with the Atacama Large Millimeter/submillimeter Array (ALMA). We observe a broad disk extending from a radius of <51 au to 194^{+13}_{-2} au. We model the disk with a continuous, gapped, and double power-law model of the surface density profile, and find strong evidence for a local minimum in the surface density distribution near a radius of 70 au, consistent with a gap in the disk with an inner radius of 63^{+8}_{-16} au and width 31^{+11}_{-7} au. Gapped structure has been observed in four other debris disks -- essentially every other radially resolved debris disk observed with sufficient angular resolution and sensitivity with ALMA -- and could be suggestive of the presence of an additional planetary-mass companion.