Do you want to publish a course? Click here

Periodic Radio Emission from the M7 Dwarf 2MASS J13142039+1320011: Implications for the Magnetic Field Topology

166   0   0.0 ( 0 )
 Added by Edo Berger
 Publication date 2011
  fields Physics
and research's language is English
 Authors M. McLean




Ask ChatGPT about the research

We present multi-epoch radio and optical observations of the M7 dwarf 2MASS J13142039+1320011. We detect a ~1 mJy source at 1.43, 4.86, 8.46 and 22.5 GHz, making it the most luminous radio emission over the widest frequency range detected from an ultracool dwarf to date. A 10 hr VLA observation reveals that the radio emission varies sinusoidally with a period of 3.89+/-0.05 hr, and an amplitude of ~30% at 4.86 GHz and ~20% at 8.46 GHz. The periodicity is also seen in circular polarization, where at 4.86 GHz the polarization reverses helicity from left- to right-handed in phase with the total intensity. An archival detection in the FIRST survey indicates that the radio emission has been stable for at least a decade. We also detect periodic photometric variability in several optical filters with a period of 3.79 hr, and measure a rotation velocity of vsini=45+/-5 km/s, in good agreement with the radio and optical periods. The period and rotation velocity allow us to place a lower limit on the radius of the source of >0.12 R_sun, about 30% larger than theoretical expectations. The properties of the radio emission can be explained with a simple model of a magnetic dipole mis-aligned relative to the stellar rotation axis, with the sinusoidal variations and helicity reversal due to the rotation of the magnetic poles relative to our line of sight. The long-term stability of the radio emission indicates that the magnetic field (and hence the dynamo) is stable on a much longer timescale than the convective turn-over time of ~0.2 yr. If the radio emission is due to the electron cyclotron maser process, the inferred magnetic field strength reaches at least 8 kG.



rate research

Read More

140 - P. K. G. Williams 2014
We present multi-epoch simultaneous radio, optical, H{alpha}, UV, and X-ray observations of the active, young, low-mass binary NLTT 33370 AB (blended spectral type M7e). This system is remarkable for its extreme levels of magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known, and here we show that it is also one of the most X-ray luminous UCDs known. We detect the system in all bands and find a complex phenomenology of both flaring and periodic variability. Analysis of the optical light curve reveals the simultaneous presence of two periodicities, 3.7859 $pm$ 0.0001 and 3.7130 $pm$ 0.0002 hr. While these differ by only ~2%, studies of differential rotation in the UCD regime suggest that it cannot be responsible for the two signals. The systems radio emission consists of at least three components: rapid 100% polarized flares, bright emission modulating periodically in phase with the optical emission, and an additional periodic component that appears only in the 2013 observational campaign. We interpret the last of these as a gyrosynchrotron feature associated with large-scale magnetic fields and a cool, equatorial plasma torus. However, the persistent rapid flares at all rotational phases imply that small-scale magnetic loops are also present and reconnect nearly continuously. We present an SED of the blended system spanning more than 9 orders of magnitude in wavelength. The significant magnetism present in NLTT 33370 AB will affect its fundamental parameters, with the components radii and temperatures potentially altered by ~+20% and ~-10%, respectively. Finally, we suggest spatially resolved observations that could clarify many aspects of this systems nature.
[Abridged] We present an 8.5-hour simultaneous radio, X-ray, UV, and optical observation of the L dwarf binary 2MASSW J0746+20. We detect strong radio emission, dominated by short-duration periodic pulses at 4.86 GHz with P=124.32+/-0.11 min. The stability of the pulse profiles and arrival times demonstrates that they are due to the rotational modulation of a B~1.7 kG magnetic field. A quiescent non-variable component is also detected, likely due to emission from a uniform large-scale field. The H-alpha emission exhibits identical periodicity, but unlike the radio pulses it varies sinusoidally and is offset by exactly 1/4 of a phase. The sinusoidal variations require chromospheric emission from a large-scale field structure, with the radio pulses likely emanating from the magnetic poles. While both light curves can be explained by a rotating mis-aligned magnetic field, the 1/4 phase lag rules out a symmetric dipole topology since it would result in a phase lag of 1/2 (poloidal field) or zero (toroidal field). We therefore conclude that either (i) the field is dominated by a quadrupole configuration, which can naturally explain the 1/4 phase lag; or (ii) the H-alpha and/or radio emission regions are not trivially aligned with the field. Regardless of the field topology, we use the measured period along with the known rotation velocity (vsini=27 km/s), and the binary orbital inclination (i=142 deg), to derive a radius for the primary star of 0.078+/-0.010 R_sun. This is the first measurement of the radius of an L dwarf, and along with a mass of 0.085+/-0.010 M_sun it provides a constraint on the mass-radius relation below 0.1 M_sun. We find that the radius is about 30% smaller than expected from theoretical models, even for an age of a few Gyr.
129 - G. Hallinan , S. Bourke , C. Lane 2007
We report the detection of periodic (p = 1.96 hours) bursts of extremely bright, 100% circularly polarized, coherent radio emission from the M9 dwarf TVLM 513-46546. Simultaneous photometric monitoring observations have established this periodicity to be the rotation period of the dwarf. These bursts, which were not present in previous observations of this target, confirm that ultracool dwarfs can generate persistent levels of broadband, coherent radio emission, associated with the presence of kG magnetic fields in a large-scale, stable configuration. Compact sources located at the magnetic polar regions produce highly beamed emission generated by the electron cyclotron maser instability, the same mechanism known to generate planetary coherent radio emission in our solar system. The narrow beams of radiation pass our line of sight as the dwarf rotates, producing the associated periodic bursts. The resulting radio light curves are analogous to the periodic light curves associated with pulsar radio emission highlighting TVLM 513-46546 as the prototype of a new class of transient radio source.
We report low frequency observations of the quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was $approx$ 5.2 s and their average degree of circular polarization ($dcp$) was $approx 0.12$. We calculated the associated magnetic field $B$ : (1) using the empirical relationship between the $dcp$ and $B$ for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in $B approx$ 4.2 G at the location of the 80 MHz plasma level (radial distance $r approx 1.3~rm R_{odot}$) in the active region corona.
Empirical trends in stellar X-ray and radio luminosities suggest that low mass ultracool dwarfs (UCDs) should not produce significant radio emission. Defying these expectations, strong non-thermal emission has been observed in a few UCDs in the 1-10 GHz range, with a variable component often attributed to global aurorae and a steady component attributed to other processes such as gyrosynchrotron emission. While both auroral and gyrosynchrotron emission peak near the critical frequency, only the latter radiation is expected to extend into millimeter wavelengths. We present ALMA 97.5 GHz and VLA 33 GHz observations of a small survey of 5 UCDs. LP 349-25, LSR J1835+3259, and NLTT 33370 were detected at 97.5 GHz, while LP 423-31 and LP 415-20 resulted in non-detections at 33 GHz. A significant flare was observed in NLTT 33370 that reached a peak flux of 4880 +/- 360 microJy, exceeding the quiescent flux by nearly an order of magnitude, and lasting 20 seconds. These ALMA observations show bright 97.5 GHz emission with spectral indices ranging from alpha = -0.76 to alpha = -0.29, suggestive of optically thin gyrosynchrotron emission. If such emission traces magnetic reconnection events, then this could have consequences for both UCD magnetic models and the atmospheric stability of planets in orbit around them. Overall, our results provide confirmation that gyrosynchrotron radiation in radio loud UCDs can remain detectable into the millimeter regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا