Do you want to publish a course? Click here

Periodic Radio and H-alpha Emission from the L Dwarf Binary 2MASSW J0746425+200032: Exploring the Magnetic Field Topology and Radius of an L Dwarf

307   0   0.0 ( 0 )
 Added by Edo Berger
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

[Abridged] We present an 8.5-hour simultaneous radio, X-ray, UV, and optical observation of the L dwarf binary 2MASSW J0746+20. We detect strong radio emission, dominated by short-duration periodic pulses at 4.86 GHz with P=124.32+/-0.11 min. The stability of the pulse profiles and arrival times demonstrates that they are due to the rotational modulation of a B~1.7 kG magnetic field. A quiescent non-variable component is also detected, likely due to emission from a uniform large-scale field. The H-alpha emission exhibits identical periodicity, but unlike the radio pulses it varies sinusoidally and is offset by exactly 1/4 of a phase. The sinusoidal variations require chromospheric emission from a large-scale field structure, with the radio pulses likely emanating from the magnetic poles. While both light curves can be explained by a rotating mis-aligned magnetic field, the 1/4 phase lag rules out a symmetric dipole topology since it would result in a phase lag of 1/2 (poloidal field) or zero (toroidal field). We therefore conclude that either (i) the field is dominated by a quadrupole configuration, which can naturally explain the 1/4 phase lag; or (ii) the H-alpha and/or radio emission regions are not trivially aligned with the field. Regardless of the field topology, we use the measured period along with the known rotation velocity (vsini=27 km/s), and the binary orbital inclination (i=142 deg), to derive a radius for the primary star of 0.078+/-0.010 R_sun. This is the first measurement of the radius of an L dwarf, and along with a mass of 0.085+/-0.010 M_sun it provides a constraint on the mass-radius relation below 0.1 M_sun. We find that the radius is about 30% smaller than expected from theoretical models, even for an age of a few Gyr.



rate research

Read More

We present the first simultaneous, multi-wavelength observations of an L dwarf, the L3.5 candidate brown dwarf 2MASS J00361617+1821104, conducted with the Very Large Array, the Chandra X-ray Observatory, and the Kitt Peak 4-m telescope. We detect strongly variable and periodic radio emission (P=3 hr) with a fraction of about 60% circular polarization. No X-ray emission is detected to a limit of L_X/L_{bol}<2e-5, several hundred times below the saturation level observed in early M dwarfs. Similarly, we do not detect H-alpha emission to a limit of L_{H-alpha}/L_{bol}<2e-7, the deepest for any L dwarf observed to date. The ratio of radio to X-ray luminosity is at least four orders of magnitude in excess of that observed in a wide range of active stars (including M dwarfs) providing the first direct confirmation that late-M and L dwarfs violate the radio/X-ray correlation. The radio emission is due to gyrosynchrotron radiation in a large-scale magnetic field of about 175 G, which is maintained on timescales longer than three years. The detected 3-hour period may be due to (i) the orbital motion of a companion at a separation of about five stellar radii, similar to the configuration of RS CVn systems, (ii) an equatorial rotation velocity of about 37 km/s and an anchored, long-lived magnetic field, or (iii) periodic release of magnetic stresses in the form of weak flares. In the case of orbital motion, the magnetic activity may be induced by the companion, possibly explaining the unusual pattern of activity and the long-lived signal. We conclude that fully convective stars can maintain a large-scale and stable magnetic field, but the lack of X-ray and H-alpha emission indicates that the atmospheric conditions are markedly different than in early-type stars and even M dwarfs. [abridged]
180 - M. McLean 2011
We present multi-epoch radio and optical observations of the M7 dwarf 2MASS J13142039+1320011. We detect a ~1 mJy source at 1.43, 4.86, 8.46 and 22.5 GHz, making it the most luminous radio emission over the widest frequency range detected from an ultracool dwarf to date. A 10 hr VLA observation reveals that the radio emission varies sinusoidally with a period of 3.89+/-0.05 hr, and an amplitude of ~30% at 4.86 GHz and ~20% at 8.46 GHz. The periodicity is also seen in circular polarization, where at 4.86 GHz the polarization reverses helicity from left- to right-handed in phase with the total intensity. An archival detection in the FIRST survey indicates that the radio emission has been stable for at least a decade. We also detect periodic photometric variability in several optical filters with a period of 3.79 hr, and measure a rotation velocity of vsini=45+/-5 km/s, in good agreement with the radio and optical periods. The period and rotation velocity allow us to place a lower limit on the radius of the source of >0.12 R_sun, about 30% larger than theoretical expectations. The properties of the radio emission can be explained with a simple model of a magnetic dipole mis-aligned relative to the stellar rotation axis, with the sinusoidal variations and helicity reversal due to the rotation of the magnetic poles relative to our line of sight. The long-term stability of the radio emission indicates that the magnetic field (and hence the dynamo) is stable on a much longer timescale than the convective turn-over time of ~0.2 yr. If the radio emission is due to the electron cyclotron maser process, the inferred magnetic field strength reaches at least 8 kG.
144 - G. Hallinan , S. Bourke , C. Lane 2007
We report the detection of periodic (p = 1.96 hours) bursts of extremely bright, 100% circularly polarized, coherent radio emission from the M9 dwarf TVLM 513-46546. Simultaneous photometric monitoring observations have established this periodicity to be the rotation period of the dwarf. These bursts, which were not present in previous observations of this target, confirm that ultracool dwarfs can generate persistent levels of broadband, coherent radio emission, associated with the presence of kG magnetic fields in a large-scale, stable configuration. Compact sources located at the magnetic polar regions produce highly beamed emission generated by the electron cyclotron maser instability, the same mechanism known to generate planetary coherent radio emission in our solar system. The narrow beams of radiation pass our line of sight as the dwarf rotates, producing the associated periodic bursts. The resulting radio light curves are analogous to the periodic light curves associated with pulsar radio emission highlighting TVLM 513-46546 as the prototype of a new class of transient radio source.
[abridged] We report four years of radial velocity monitoring observations of SDSS J080531.84+481233.0 that reveal significant and periodic variability, confirming the binary nature of the source. We infer an orbital period of 2.02$pm$0.03 yr, a semi-major axis of 0.76$^{+0.05}_{-0.06}$ AU, and an eccentricity of 0.46$pm$0.05, consistent with the amplitude of astrometric variability and prior attempts to resolve the system. Folding in constraints based on the spectral types of the components (L4$pm$0.7 and T5.5$pm$1.1), corresponding effective temperatures, and brown dwarf evolutionary models, we further constrain the orbital inclination of this system to be nearly edge-on (90$^opm$19$^o$), and deduce a large system mass ratio (M$_2$/M$_1$ = 0.86$^{+0.10}_{-0.12}$), substellar components (M$_1$ = 0.057$^{+0.016}_{-0.014}$ M$_{odot}$, M$_2$ = 0.048$^{+0.008}_{-0.010}$ M$_{odot}$), and a relatively old system age (minimum age = 4.0$^{+1.9}_{-1.2}$ Gyr). The measured projected rotational velocity of the primary ($vsin{i}$ = 34.1$pm$0.7 km/s) implies that this inactive source is a rapid rotator (period $lesssim$ 3 hr) and a viable system for testing spin-orbit alignment in very-low-mass multiples. The combination of well-determined component atmospheric properties and masses near and/or below the hydrogen minimum mass make SDSS J0805+4812AB an important system for future tests of brown dwarf evolutionary models.
We present analysis of HST Planetary Camera images of twenty L dwarfs identified in the course of the Two Micron All-Sky Survey. Four of the targets have faint, red companions at separations between 0.07 and 0.29 arcseconds (1.6 to 7.6 AU). In three cases, the bolometric magnitudes of the components differ by less than 0.3 magnitudes. Since the cooling rate for brown dwarfs is a strong function of mass, similarity in luminosities implies comparable masses. The faint component in the 2M0850 system, however, is over 1.3 magnitudes fainter than the primary in the I-band, and ~0.8 magnitudes fainter in M(bol). Indeed, 2M0850B is ~0.8 magnitudes fainter in I than the lowest luminosity L dwarf currently known, while the absolute magnitude we deduce at J is almost identical with M_J for Gl 229B. Theoretical models indicate a mass ratio of ~0.75. The mean separation of the L dwarf binaries in the current sample is smaller by a factor of two than amongst M dwarfs. We discuss the implications of these results for the temperature scale in the L/T transition region and for the binary frequency amongst L dwarfs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا