Do you want to publish a course? Click here

Electrical Transport Properties of Graphene Nanoribbons Produced from Sonicating Graphite in Solution

143   0   0.0 ( 0 )
 Added by Zhixian Zhou
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A simple one-stage solution-based method was developed to produce graphene nanoribbons by sonicating graphite powder in organic solutions with polymer surfactant. The graphene nanoribbons were deposited on silicon substrate, and characterized by Raman spectroscopy and atomic force microscopy. Single-layer and few-layer graphene nanoribbons with a width ranging from sub-10 nm to tens of nm and length ranging from hundreds of nm to 1 {mu}m were routinely observed. Electrical transport properties of individual graphene nanoribbons were measured in both the back-gate and polymer-electrolyte top-gate configurations. The mobility of the graphene nanoribbons was found to be over an order of magnitude higher when measured in the latter than in the former configuration (without the polymer electrolyte), which can be attributed to the screening of the charged impurities by the counter-ions in the polymer electrolyte. This finding suggests that the charge transport in these solution-produced graphene nanoribbons is largely limited by charged impurity scattering.



rate research

Read More

169 - K. Sasaki , K. Kato , Y. Tokura 2011
Matrix elements of electron-light interactions for armchair and zigzag graphene nanoribbons are constructed analytically using a tight-binding model. The changes in wavenumber ($Delta n$) and pseudospin are the necessary elements if we are to understand the optical selection rule. It is shown that an incident light with a specific polarization and energy, induces an indirect transition ($Delta n=pm1$), which results in a characteristic peak in absorption spectra. Such a peak provides evidence that the electron standing wave is formed by multiple reflections at both edges of a ribbon. It is also suggested that the absorption of low-energy light is sensitive to the position of the Fermi energy, direction of light polarization, and irregularities in the edge. The effect of depolarization on the absorption peak is briefly discussed.
We report the results of an experimental study of thermal and magnetic properties of nanostructured ferrimagnetic iron oxide composites with graphene and graphite fillers synthesized via the current activated pressure assisted densification. The thermal conductivity was measured using the laser-flash and transient plane source techniques. It was demonstrated that addition of 5 wt. % of equal mixture of graphene and graphite flakes to the composite results in a factor of x2.6 enhancement of the thermal conductivity without significant degradation of the saturation magnetization. The microscopy and spectroscopic characterization reveal that sp2 carbon fillers preserve their crystal structure and morphology during the composite processing. The strong increase in the thermal conductivity was attributed to the excellent phonon heat conduction properties of graphene and graphite. The results are important for energy and electronic applications of the nanostructured permanent magnets.
It is now possible to produce graphene nanoribbons (GNRs) with atomically defined widths. GNRs offer many opportunities for electronic devices and composites, if it is possible to establish the link between edge structure and functionalisation, and resultant GNR properties. Switching hydrogen edge termination to larger more complex functional groups such as hydroxyls or thiols induces strain at the ribbon edge. However we show that this strain is then relieved via the formation of static out-of-plane ripples. The resultant ribbons have a significantly reduced Youngs Modulus which varies as a function of ribbon width, modified band gaps, as well as heterogeneous chemical reactivity along the edge. Rather than being the exception, such static edge ripples are likely on the majority of functionalized graphene ribbon edges.
Using first-principles calculations, the effect of magnetic point defects (vacancy and adatom) is investigated in zigzag graphene nanoribbons. The structural, electronic, and spin-transport properties are studied. While pristine ribbons display anti-parallel spin states at their edges, the defects are found to perturb this coupling. The introduction of a vacancy drastically reduces the energy difference between parallel and anti-parallel spin orientations, though the latter is still favored. Moreover, the local magnetic moment of the defect is screened by the edges so that the total magnetic moment is quite small. In contrast, when an adatom is introduced, the parallel spin orientation is preferred and the local magnetic moment of the defect adds up to the contributions of the edges. Furthermore, a spin-polarized transmission is observed at the Fermi energy, suggesting the use of such a defective graphene nanoribbon as spin-valve device.
We unveil the nature of the structural disorder in bottom-up zigzag graphene nanoribbons along with its effect on the magnetism and electronic transport on the basis of scanning probe microscopies and first-principles calculations. We find that edge-missing m-xylene units emerging during the cyclodehydrogenation step of the on-surface synthesis are the most common point defects. These bite defects act as spin-1 paramagnetic centers, severely disrupt the conductance spectrum around the band extrema, and give rise to spin-polarized charge transport. We further show that the electronic conductance across graphene nanoribbons is more sensitive to bite defects forming at the zigzag edges than at the armchair ones. Our work establishes a comprehensive understanding of the low-energy electronic properties of disordered bottom-up graphene nanoribbons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا