Do you want to publish a course? Click here

Spin-Transport in Defective Graphene Nanoribbons

158   0   0.0 ( 0 )
 Added by Simon Dubois
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using first-principles calculations, the effect of magnetic point defects (vacancy and adatom) is investigated in zigzag graphene nanoribbons. The structural, electronic, and spin-transport properties are studied. While pristine ribbons display anti-parallel spin states at their edges, the defects are found to perturb this coupling. The introduction of a vacancy drastically reduces the energy difference between parallel and anti-parallel spin orientations, though the latter is still favored. Moreover, the local magnetic moment of the defect is screened by the edges so that the total magnetic moment is quite small. In contrast, when an adatom is introduced, the parallel spin orientation is preferred and the local magnetic moment of the defect adds up to the contributions of the edges. Furthermore, a spin-polarized transmission is observed at the Fermi energy, suggesting the use of such a defective graphene nanoribbon as spin-valve device.



rate research

Read More

On-surface synthesis has recently emerged as an effective route towards the atomically precise fabrication of graphene nanoribbons of controlled topologies and widths. However, whether and to which degree structural disorder occurs in the resulting samples is a crucial issue for prospective applications that remains to be explored. Here, we experimentally identify missing benzene rings at the edges, which we name bite defects, as the most abundant type of disorder in armchair nanoribbons synthesized by the bottom-up approach. First, we address their density and spatial distribution on the basis of scanning tunnelling microscopy and find that they exhibit a strong tendency to aggregate. Next, we explore their effect on the quantum charge transport from first-principles calculations, revealing that such imperfections substantially disrupt the conduction properties at the band edges. Finally, we generalize our theoretical findings to wider nanoribbons in a systematic manner, hence establishing practical guidelines to minimize the detrimental role of such defects on the charge transport. Overall, our work portrays a detailed picture of bite defects in bottom-up armchair graphene nanoribbons and assesses their effect on the performance of carbon-based nanoelectronic devices.
A simple one-stage solution-based method was developed to produce graphene nanoribbons by sonicating graphite powder in organic solutions with polymer surfactant. The graphene nanoribbons were deposited on silicon substrate, and characterized by Raman spectroscopy and atomic force microscopy. Single-layer and few-layer graphene nanoribbons with a width ranging from sub-10 nm to tens of nm and length ranging from hundreds of nm to 1 {mu}m were routinely observed. Electrical transport properties of individual graphene nanoribbons were measured in both the back-gate and polymer-electrolyte top-gate configurations. The mobility of the graphene nanoribbons was found to be over an order of magnitude higher when measured in the latter than in the former configuration (without the polymer electrolyte), which can be attributed to the screening of the charged impurities by the counter-ions in the polymer electrolyte. This finding suggests that the charge transport in these solution-produced graphene nanoribbons is largely limited by charged impurity scattering.
We report an electron transport study of lithographically fabricated graphene nanoribbons of various widths and lengths at different temperatures. At the charge neutrality point, a length-independent transport gap forms whose size is inversely proportional to the width. In this gap, electron is localized, and charge transport exhibits a transition between simple thermally activated behavior at higher temperatures and a variable range hopping at lower temperatures. By varying the geometric capacitance through the addition of top gates, we find that charging effects constitute a significant portion of the activation energy.
205 - D. Hou , J. H. Wei , S. J. Xie 2010
We theoretically design a graphene-based all-organic ferromagnetic semiconductor by terminating zigzag graphene nanoribbons (ZGNRs) with organic magnets. A large spin-split gap with 100% spin polarized density of states near the Fermi energy is obtained, which is of potential application in spin transistors. The interplays among electron, spin and lattice degrees of freedom are studied using the first-principles calculations combined with fundamental model analysis. All of the calculations consistently demonstrate that although no d electrons existing, the antiferromagnetic pi-pi exchange together with the strong spin-lattice interactions between organic magnets and ZGNRs make the ground state ferromagnetic. The fundamental physics makes it possible to optimally select the organic magnets towards practical applications.
Graphene nanoribbons are the counterpart of carbon nanotubes in graphene-based nanoelectronics. We investigate the electronic properties of chemically modified ribbons by means of density functional theory. We observe that chemical modifications of zigzag ribbons can break the spin degeneracy. This promotes the onset of a semiconducting-metal transition, or of an half-semiconducting state, with the two spin channels having a different bandgap, or of a spin-polarized half-semiconducting state -where the spins in the valence and conduction bands are oppositely polarized. Edge functionalization of armchair ribbons gives electronic states a few eV away from the Fermi level, and does not significantly affect their bandgap. N and B produce different effects, depending on the position of the substitutional site. In particular, edge substitutions at low density do not significantly alter the bandgap, while bulk substitution promotes the onset of semiconducting-metal transitions. Pyridine-like defects induce a semiconducting-metal transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا