No Arabic abstract
The Milky Way (MW) remains a primary laboratory for understanding the structure and evolution of spiral galaxies, but typically we are denied clear views of MW stellar populations at low Galactic latitudes because of extinction by interstellar dust. However, the combination of 2MASS near-infrared (NIR) and Spitzer-IRAC mid-infrared (MIR) photometry enables a powerful method for determining the line of sight reddening to any star: the sampled wavelengths lie in the Rayleigh-Jeans part of the spectral energy distribution of most stars, where, to first order, all stars have essentially the same intrinsic color. Thus, changes in stellar NIR-MIR colors due to interstellar reddening are readily apparent, and (under an assumed extinction law) the observed colors and magnitudes of stars can be easily and accurately restored to their intrinsic values, greatly increasing their usefulness for Galactic structure studies. In this paper we explore this Rayleigh-Jeans Color Excess (RJCE) method and demonstrate that use of even a simple variant of the RJCE method based on a single reference color, (H-[4.5um]), can rather accurately remove dust effects from previously uninterpretable 2MASS color-magnitude diagrams of stars in fields along the heavily reddened Galactic mid-plane, with results far superior to those derived from application of other dereddening methods. We also show that total Galactic midplane extinction looks rather different from that predicted using 100um emission maps from the IRAS/ISSA and COBE/DIRBE instruments as presented by Schlegel et al. Instead, the Galactic mid-plane extinction strongly resembles the distribution of 13-CO (J=1->0) emission. Future papers will focus on refining the RJCE method and applying the technique to understand better not only dust and its distribution, but the distribution of stars intermixed with the dust in the low-latitude Galaxy.
We present an extinction map of the inner $sim$SI{15}{arcminute} by {16}{arcminute} of the Galactic Center (GC) with map `pixels measuring SI{5}{arcsecond} $times$ SI{5}{arcsecond} using integrated light color measurements in the near- and mid-infrared. We use a variant of the Rayleigh-Jeans Color Excess (RJCE) method first described by Majewski et al. (2011) as the basis of our work, although we have approached our problem with a Bayesian mindset and dispensed with point-source photometry in favor of surface photometry, turning the challenge of the extremely crowded field at the GC into an advantage. Our results show that extinction at the GC is not inconsistent with a single power law coefficient, $beta=2.03pm0.06$, and compare our results with those using the Red Clump (RC) point-source photometry method of extinction estimation. We find that our measurement of $beta$ and its apparent lack of spatial variation are in agreement with prior studies, despite the bimodal distribution of values in our extinction map at the GC with peaks at um{5} and SI{7.5}{mag}. This bimodal nature of extinction is likely due to the InfraRed Dark Clouds that obscure portions of the inner GC field. We present our extinction law and map and de-reddened NIR CMDs and color-color diagram of the GC region using the point-source catalog of IR sources compiled by DeWitt et al. (2010). The de-reddening is limited by the error in the extinction measurement (typically SI{0.6}{mag}), which is affected by the size of our map pixels and is not fine-grained enough to separate out the multiple stellar populations present toward the GC.
We combine near-infrared (2MASS) and mid-infrared (Spitzer-IRAC) photometry to characterize the IR extinction law (1.2-8 microns) over nearly 150 degrees of contiguous Milky Way midplane longitude. The relative extinctions in 5 passbands across these wavelength and longitude ranges are derived by calculating color excess ratios for G and K giant red clump stars in contiguous midplane regions and deriving the wavelength dependence of extinction in each one. Strong, monotonic variations in the extinction law shape are found as a function of angle from the Galactic center, symmetric on either side of it. These longitudinal variations persist even when dense interstellar regions, known a priori to have a shallower extinction curve, are removed. The increasingly steep extinction curves towards the outer Galaxy indicate a steady decrease in the absolute-to-selective extinction ratio (R_V) and in the mean dust grain size at greater Galactocentric angles. We note an increasing strength of the 8 micron extinction inflection at high Galactocentric angles and, using theoretical dust models, show that this behavior is consistent with the trend in R_V. Along several lines of sight where the solution is most feasible, A_lambda/A_Ks as a function of Galactic radius is estimated and shown to have a Galactic radial dependence. Our analyses suggest that the observed relationship between extinction curve shape and Galactic longitude is due to an intrinsic dependence of the extinction law on Galactocentric radius.
{The Galactic centre (GC) is a unique astrophysical laboratory to study the stellar population of galactic nuclei because it is the only galactic nucleus whose stars can be resolved down to milliparsec scales. However, the extreme and spatially highly variable interstellar extinction towards the GC poses a serious obstacle to photometric stellar classification.} {Our goal is to identify hot, massive stars in the nuclear stellar disc (NSD) region through combining near-infrared (NIR) and mid-infrared (MIR) photometry, and thus to demonstrate the feasibility of this technique, which may gain great importance with the arrival of the James Webb Space Telescope (JWST).} {We combined the GALACTICNUCLEUS NIR survey with the IRAC/Spitzer MIR survey of the GC. We applied the so-called Rayleigh-Jeans colour excess (RJCE) de-reddening method to our combined NIR-MIR data to identify potential hot stars in colour-magnitude diagrams (CMDs).} {Despite the very low angular resolution of IRAC we find 12 clear candidates for young massive stars among the $1,065$ sources that meet our selection criteria. Seven out of these 12 stars are previously known hot, massive stars belonging to the Arches and Quintuplet clusters, as well as sources detected by the Hubble Space Telescope/NICMOS Paschen-$alpha$ survey. Five of our massive star candidates have not been previously reported in the literature.} {We show that the RJCE method is a valuable tool to identify hot stars in the GC using photometry alone. Upcoming instruments with high angular resolution MIR imaging capabilities such as the JWST could surely make more substantial use of this de-reddening method and help establish a far more complete census of hot, young stars in the GC area than what is possible at the moment.}
At distances from the active galaxy nucleus (AGN) where the ambient temperature falls below ~1500-1800 K, dust is able to survive. It is thus possible to have a large dusty structure present which surrounds the AGN. This is the first of two papers aiming at comparing six dusty torus models with available SEDs, namely Fritz et al. (2006), Nenkova et al. (2008B), Hoenig & Kishimoto (2010), Siebenmorgen et al. (2015), Stalevski et al. (2016), and Hoenig & Kishimoto (2017). In this first paper we use synthetic spectra to explore the discrimination between these models and under which circumstances they allow to restrict the torus parameters, while our second paper analyzes the best model to describe the mid-infrared spectroscopic data. We have produced synthetic spectra from current instruments: GTC/CanariCam and Spitzer /IRS and future JWST/MIRI and JWST/NIRSpec instruments. We find that for a reasonable brightness (F12um > 100mJy) we can actually distinguish among models except for the two pair of parent models. We show that these models can be distinguished based on the continuum slopes and the strength of the silicate features. Moreover, their parameters can be constrained within 15% of error, irrespective of the instrument used, for all the models but Hoenig & Kishimoto (2017). However, the parameter estimates are ruined when more than 50% of circumnuclear contributors are included. Therefore, future high spatial resolution spectra as those expected from JWST will provide enough coverage and spatial resolution to tackle this topic.
We present Stroemgren-NIR photometry of NGC6528 and its surroundings in the Baades Window. uvby images were collected with EFOSC2@NTT, while NIR catalogs are based on VIRCAM@VISTA and SOFI@NTT data. The matching with HST photometry allowed us to obtain proper-motion-cleaned samples of cluster and bulge stars. The huge color sensitivity of Stroemgren-NIR CMDs helped us in disentangling age and metallicity effects. The RGB of NGC6528 is reproduced by scaled-solar isochrones with solar abundance or alpha-enhanced isochrones with the same iron content, and an age of t = 11+/-1 Gyr. These findings support literature age estimates for NGC6528. We also performed a theoretical metallicity calibration based on the Stroemgren index m1 and on visual-NIR colors for RGs, by adopting scaled-solar and alpha-enhanced models. We applied the calibration to estimate the metallicity of NGC6528, finding [Fe/H] = -0.04+/-0.02, with an intrinsic dispersion of 0.27 dex (by averaging abundances based on the scaled-solar [m], y - J and [m], y - K Metallicity-Index-Color relations), and of -0.11+/-0.01 (sig = 0.27 dex), by using the m1, y - J and m1, y - K relations. These findings support the results of Zoccali et al. (2004) which give [Fe/H] = -0.10+/-0.2, and a low alpha-enhancement, [alpha/Fe] = 0.1, and of Carretta et al. (2001), that find [Fe/H] = 0.07+/-0.01, with [alpha/Fe] = 0.2. By applying the scaled-solar MIC relations to Baades window RGs, we find a metallicity distribution extending from [Fe/H] ~ -1.0 to ~ 1 dex, with peaks at [Fe/H] ~ -0.2 and +0.55 ([m], y - J and [m], y - K relations), and [Fe/H] ~ -0.25 and +0.4 (m1, y - J and m1, y - K relations). These findings are in good agreement with the spectroscopic studies of Hill et al. (2011) for the Baades window, of Uttenthaler et al. (2012) for a region centered at (l,b) = (0, -10), and with the results of the ARGOS survey (Ness et al. 2013a).