Do you want to publish a course? Click here

Stroemgren - near-infrared photometry of the Baades Window. I. The bulge globular cluster NGC6528 and the surrounding field

116   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Stroemgren-NIR photometry of NGC6528 and its surroundings in the Baades Window. uvby images were collected with EFOSC2@NTT, while NIR catalogs are based on VIRCAM@VISTA and SOFI@NTT data. The matching with HST photometry allowed us to obtain proper-motion-cleaned samples of cluster and bulge stars. The huge color sensitivity of Stroemgren-NIR CMDs helped us in disentangling age and metallicity effects. The RGB of NGC6528 is reproduced by scaled-solar isochrones with solar abundance or alpha-enhanced isochrones with the same iron content, and an age of t = 11+/-1 Gyr. These findings support literature age estimates for NGC6528. We also performed a theoretical metallicity calibration based on the Stroemgren index m1 and on visual-NIR colors for RGs, by adopting scaled-solar and alpha-enhanced models. We applied the calibration to estimate the metallicity of NGC6528, finding [Fe/H] = -0.04+/-0.02, with an intrinsic dispersion of 0.27 dex (by averaging abundances based on the scaled-solar [m], y - J and [m], y - K Metallicity-Index-Color relations), and of -0.11+/-0.01 (sig = 0.27 dex), by using the m1, y - J and m1, y - K relations. These findings support the results of Zoccali et al. (2004) which give [Fe/H] = -0.10+/-0.2, and a low alpha-enhancement, [alpha/Fe] = 0.1, and of Carretta et al. (2001), that find [Fe/H] = 0.07+/-0.01, with [alpha/Fe] = 0.2. By applying the scaled-solar MIC relations to Baades window RGs, we find a metallicity distribution extending from [Fe/H] ~ -1.0 to ~ 1 dex, with peaks at [Fe/H] ~ -0.2 and +0.55 ([m], y - J and [m], y - K relations), and [Fe/H] ~ -0.25 and +0.4 (m1, y - J and m1, y - K relations). These findings are in good agreement with the spectroscopic studies of Hill et al. (2011) for the Baades window, of Uttenthaler et al. (2012) for a region centered at (l,b) = (0, -10), and with the results of the ARGOS survey (Ness et al. 2013a).



rate research

Read More

107 - V. Hill , A. Lecureur , A. Gomez 2011
We seek to constrain the formation of the Galactic bulge by means of analysing the detailed chemical composition of a large sample of red clump stars in Baades window. We measure [Fe/H] in a sample of 219 bulge red clump stars from R=20000 resolution spectra obtained with FLAMES/GIRAFFE at the VLT, using an automatic procedure, differentially to the metal-rich local reference star muLeo. For a subsample of 162 stars, we also derive [Mg/H] from spectral synthesis around the MgI triplet at 6319A. The Fe and Mg metallicity distributions are both asymmetric, with median values of +0.16 and +0.21 respectively. The iron distribution is clearly bimodal, as revealed both by a deconvolution (from observational errors) and a Gaussian decomposition. The decomposition of the observed Fe and Mg metallicity distributions into Gaussian components yields two populations of equal sizes (50% each): a metal-poor component centred around [Fe/H]=-0.30 and [Mg/H]=-0.06 with a large dispersion and a narrow metal-rich component centred around [Fe/H]=+0.32 and [Mg/H]=+0.35. The metal poor component shows high [Mg/Fe] ratios (around 0.3) whereas stars in the metal rich component are found to have near solar ratios. Babusiaux et al. (2010) also find kinematical differences between the two components: the metal poor component shows kinematics compatible with an old spheroid whereas the metal rich component is consistent with a population supporting a bar. In view of their chemical and kinematical properties, we suggest different formation scenarios for the two populations: a rapid formation timescale as an old spheroid for the metal poor component (old bulge) and for the metal rich component, a formation over a longer time scale driven by the evolution of the bar (pseudo-bulge).
70 - Roger E. Cohen 2016
We present wide field JHKs photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the 2MASS photometric system. Differential reddening corrections and statistical field star decontamination are employed for all of these clusters before fitting fiducial sequences to the cluster red giant branches (RGBs). Observed values and uncertainties are reported for several photometric features, including the magnitude of the RGB bump, tip, the horizontal branch (HB) and the slope of the upper RGB. The latest spectroscopically determined chemical abundances are used to build distance- and reddening-independent relations between observed photometric features and cluster metallicity, optimizing the sample size and metallicity baseline of these relations by supplementing our sample with results from the literature. We find that the magnitude different between the HB and the RGB bump can be used to predict metallicities, in terms of both iron abundance [Fe/H] and global metallicity [M/H], with a precision of better than 0.1 dex in all three near-IR bandpasses for relative metal-rich ([M/H]$gtrsim$-1) clusters. Meanwhile, both the slope of the upper RGB and the magnitude difference between the RGB tip and bump are useful metallicity indicators over the entire sampled metallicity range (-2$lesssim$[M/H]$lesssim$0) with a precision of 0.2 dex or better, despite model predictions that the RGB slope may become unreliable at high (near-solar) metallicities. Our results agree with previous calibrations in light of the relevant uncertainties, and we discuss implications for clusters with controversial metallicities as well as directions for further investigation.
114 - N. Drory 2001
The Munich Near-IR Cluster Survey (MUNICS) is a wide-area, medium-deep, photometric survey selected in the K band. It covers an area of roughly one square degree in the K and J near-IR pass-bands. The survey area consists of 16 6 x 6 fields targeted at QSOs with redshifts 0.5 < z < 2 and 7 28 x 13 stripes targeted at `random high Galactic latitude fields. Ten of the QSO fields were additionally imaged in R and I, and 0.6 square degrees of the randomly selected fields were also imaged in the V, R, and I bands. The resulting object catalogues were strictly selected in K, having a limiting magnitude (50 per cent completeness) of K ~ 19.5 mag and J ~ 21 mag, sufficiently deep to detect passively evolving systems up to a redshift of z ~ 1.5 and luminosity of 0.5 L*. The optical data reach a depth of roughly R ~ 23.5 mag. The projects main scientific aims are the identification of galaxy clusters at redshifts around unity and the selection of a large sample of field early-type galaxies at 0 < z < 1.5 for evolutionary studies. In this paper - the first in a series - we describe the surveys concept, the selection of the survey fields, the near-IR and optical imaging and data reduction, object extraction, and the construction of photometric catalogues. Finally, we show the J-K vs. K colour-magnitude diagramme and the R-J vs. J-K, V-I vs. J-K, and V-I vs. V-R colour-colour diagrammes for MUNICS objects, together with stellar population-synthesis models for different star-formation histories, and conclude that the data set presented is suitable for extracting a catalogue of massive field galaxies in the redshift range 0.5 < z < 1.5 for evolutionary studies and follow-up observations.
We used ultra-deep $J$ and $K_s$ images secured with the near-infrared GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a ($K_s$, $J-K_s$) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate near-infrared CMD from the ground for this cluster, by reaching $K_s$ $sim$ 21.5, approximately 8 magnitudes below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at $K_s$ $sim$ 20 we detected the so-called MS knee in a purely near-infrared CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 ($t_{age}$ = 12.0 $pm$ 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M $sim$ 0.45 M$_{odot}$ finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution.
We present deep near-infrared photometry and spectroscopy of the globular cluster 2MASS-GC03 projected in the Galactic disk using MMIRS on the Clay telescope (Las Campanas Observatory) and VISTA Variables in the Via Lactea survey (VVV) data. Most probable cluster member candidates were identified from near-infrared photometry. Out of ten candidates that were followed-up spectroscopically, five have properties of cluster members, from which we calculate <[Fe/H]> = -0.9 +- 0.2 and a radial velocity of v_r > = -78 +- 12km/s. A distance of 10.8kpc is estimated from 3 likely RRLyrae members. Given that the cluster is currently at a distance of 4.2kpc from the Galactic center, the clusters long survival time of an estimated 11.3 +- 1.2Gyr strengthens the case for its globular-cluster nature. The cluster has a hint of elongation in the direction of the Galactic center.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا