Do you want to publish a course? Click here

Lifting the Dusty Veil II: A Large-Scale Study of the Galactic Infrared Extinction Law

123   0   0.0 ( 0 )
 Added by Gail Zasowski
 Publication date 2009
  fields Physics
and research's language is English
 Authors G. Zasowski




Ask ChatGPT about the research

We combine near-infrared (2MASS) and mid-infrared (Spitzer-IRAC) photometry to characterize the IR extinction law (1.2-8 microns) over nearly 150 degrees of contiguous Milky Way midplane longitude. The relative extinctions in 5 passbands across these wavelength and longitude ranges are derived by calculating color excess ratios for G and K giant red clump stars in contiguous midplane regions and deriving the wavelength dependence of extinction in each one. Strong, monotonic variations in the extinction law shape are found as a function of angle from the Galactic center, symmetric on either side of it. These longitudinal variations persist even when dense interstellar regions, known a priori to have a shallower extinction curve, are removed. The increasingly steep extinction curves towards the outer Galaxy indicate a steady decrease in the absolute-to-selective extinction ratio (R_V) and in the mean dust grain size at greater Galactocentric angles. We note an increasing strength of the 8 micron extinction inflection at high Galactocentric angles and, using theoretical dust models, show that this behavior is consistent with the trend in R_V. Along several lines of sight where the solution is most feasible, A_lambda/A_Ks as a function of Galactic radius is estimated and shown to have a Galactic radial dependence. Our analyses suggest that the observed relationship between extinction curve shape and Galactic longitude is due to an intrinsic dependence of the extinction law on Galactocentric radius.



rate research

Read More

225 - Jian Gao , B. W. Jiang , Aigen Li 2013
Based on the photometric data from the Spitzer/SAGE survey and with red giants as the extinction tracers, the mid-infrared (MIR) extinction laws in the Large Magellanic Cloud (LMC) are derived for the first time in the form of A_lambda/A_Ks, the extinction in the four IRAC bands (i.e., [3.6], [4.5], [5.8] and [8.0]um) relative to the 2MASS Ks band at 2.16um. We obtain the near-infrared (NIR) extinction coefficient to be E(J-H)/E(H-Ks)=1.29pm0.04 and E(J-Ks)/E(H-Ks)=1.94pm0.04. The wavelength dependence of the MIR extinction A_lambda/A_Ks in the LMC varies from one sightline to another. The overall mean MIR extinction is A_[3.6]/A_Ks=0.72pm0.03, A_[4.5]/A_Ks=0.94pm0.03, A_[5.8]/A_Ks=0.58pm0.04, and A_[8.0]/A_Ks=0.62pm0.05. Except for the extinction in the IRAC [4.5] band which may be contaminated by the 4.6um CO gas absorption of red giants (which are used to trace the LMC extinction), the extinction in the other three IRAC bands show a flat curve, close to the Milky Way Rv = 5.5 model extinction curve (where Rv is the optical total-to-selective extinction ratio). The possible systematic bias caused by the correlated uncertainties of Ks-lambda and J-Ks is explored in terms of Monte-Carlo simulations. It is found that this could lead to an overestimation of A_lambda/A_Ks in the MIR.
The Milky Way (MW) remains a primary laboratory for understanding the structure and evolution of spiral galaxies, but typically we are denied clear views of MW stellar populations at low Galactic latitudes because of extinction by interstellar dust. However, the combination of 2MASS near-infrared (NIR) and Spitzer-IRAC mid-infrared (MIR) photometry enables a powerful method for determining the line of sight reddening to any star: the sampled wavelengths lie in the Rayleigh-Jeans part of the spectral energy distribution of most stars, where, to first order, all stars have essentially the same intrinsic color. Thus, changes in stellar NIR-MIR colors due to interstellar reddening are readily apparent, and (under an assumed extinction law) the observed colors and magnitudes of stars can be easily and accurately restored to their intrinsic values, greatly increasing their usefulness for Galactic structure studies. In this paper we explore this Rayleigh-Jeans Color Excess (RJCE) method and demonstrate that use of even a simple variant of the RJCE method based on a single reference color, (H-[4.5um]), can rather accurately remove dust effects from previously uninterpretable 2MASS color-magnitude diagrams of stars in fields along the heavily reddened Galactic mid-plane, with results far superior to those derived from application of other dereddening methods. We also show that total Galactic midplane extinction looks rather different from that predicted using 100um emission maps from the IRAS/ISSA and COBE/DIRBE instruments as presented by Schlegel et al. Instead, the Galactic mid-plane extinction strongly resembles the distribution of 13-CO (J=1->0) emission. Future papers will focus on refining the RJCE method and applying the technique to understand better not only dust and its distribution, but the distribution of stars intermixed with the dust in the low-latitude Galaxy.
389 - J.J. Stead , M.G. Hoare 2009
We determine the slope of the near infrared extinction power law (A$_{lambda} propto lambda^{-alpha}$) for 8 regions of the Galaxy between l$sim27^{circ}$ and $sim100^{circ}$. UKIDSS Galactic Plane Survey data are compared, in colour-colour space, with Galactic population synthesis model data reddened using a series of power laws and convolved through the UKIDSS filter profiles. Monte Carlo simulations allow us to determine the best fit value of $alpha$ and evaluate the uncertainty. All values are consistent with each other giving an average extinction power law of $alpha$=2.14$^{+0.04}_{-0.05}$. This is much steeper than most laws previously derived in the literature from colour excess ratios, which are typically between 1.6 and 1.8. We show that this discrepancy is due to an inappropriate choice of filter wavelength in conversion from colour excess ratios to $alpha$ and that effective rather than isophotal wavelengths are more appropriate. In addition, curved reddening tracks, which depend on spectral type and filter system, should be used instead of straight vectors.
A precise extinction law is a critical input when interpreting observations of highly reddened sources such as young star clusters and the Galactic Center (GC). We use Hubble Space Telescope observations of a region of moderate extinction and a region of high extinction to measure the optical and near-infrared extinction law (0.8 $mu$m -- 2.2 $mu$m). The moderate extinction region is the young massive cluster Westerlund 1 (Wd1; A$_{Ks} sim$ 0.6 mag), where 453 proper motion-selected main-sequence stars are used to measure the shape of the extinction law. To quantify the shape we define the parameter $mathcal{S}_{1/lambda}$, which behaves similarly to a color excess ratio but is continuous as a function of wavelength. The high extinction region is the GC (A$_{Ks} sim$ 2.5 mag), where 819 red clump stars are used to determine the normalization of the law. The best-fit extinction law is able to reproduce the Wd1 main sequence colors, which previous laws misestimate by 10%-30%. The law is inconsistent with a single power law, even when only the near-infrared filters are considered, and has A$_{F125W}$/A$_{Ks}$ and A$_{F814W}$/A$_{Ks}$ values that are 18% and 24% larger than the commonly used citet{Nishiyama:2009fc} law, respectively. Using the law we recalculate the Wd1 distance to be 3896 $pm$ 328 pc from published observations of eclipsing binary W13. This new extinction law should be used for highly reddened populations in the Milky Way, such as the Quintuplet cluster and Young Nuclear Cluster. A python code is provided to generate the law for future use.
We derive the extinction curve towards the Galactic Center from 1 to 19 micron. We use hydrogen emission lines of the minispiral observed by ISO-SWS and SINFONI. The extinction free flux reference is the 2 cm continuum emission observed by the VLA. Towards the inner 14 * 20 we find an extinction of A(2.166 micron)=2.62 +/- 0.11, with a power-law slope of alpha=-2.11 +/- 0.06 shortward of 2.8 micron, consistent with the average near infrared slope from the recent literature. At longer wavelengths, however, we find that the extinction is grayer than shortward of 2.8 micron. We find it is not possible to fit the observed extinction curve with a dust model consisting of pure carbonaceous and silicate grains only, and the addition of composite particles, including ices, is needed to explain the observations. Combining a distance dependent extinction with our distance independent extinction we derive the distance to the GC to be R_0=7.94 +/- 0.65 kpc. Towards Sgr A* (r<0.5) we obtain A_H=4.21 +/- 0.10, A_Ks=2.42 +/- 0.10 and A_L=1.09 +/- 0.13.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا