Do you want to publish a course? Click here

Quantum superposition of a single microwave photon in two different colour states

191   0   0.0 ( 0 )
 Added by Eva Zakka-Bajjani
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ability to coherently couple arbitrary harmonic oscillators in a fully-controlled way is an important tool to process quantum information. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems by use of a two-level system as a mediating element. Direct interaction at the quantum level has only recently been realized by use of resonant coupling between trapped ions. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by use of parametric frequency conversion. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (~ 7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different colours. This parametric interaction can be described as a beam-splitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols on-chip.



rate research

Read More

We have measured quantum interference between two single microwave photons trapped in a superconducting resonator, whose frequencies are initially about 6 GHz apart. We accomplish this by use of a parametric frequency conversion process that mixes the mode currents of two cavity harmonics through a superconducting quantum interference device, and demonstrate that a two-photon entanglement operation can be performed with high fidelity.
Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of the photons [1,2] is a promising platform for investigations of quantum mechanical properties of motion of macroscopic bodies and thereby the limits of quantum mechanics [3,4]. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength towards the scale of the cavity damping rate. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities [5-8]. Addressing these issues, here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation pressure interaction energy by six orders of magnitude, allowing to approach the strong coupling regime, where a single quantum of vibrations shifts the cavity frequency by more than its linewidth. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping due to the two-level system. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion.
Thorough control of quantum measurement is key to the development of quantum information technologies. Many measurements are destructive, removing more information from the system than they obtain. Quantum non-demolition (QND) measurements allow repeated measurements that give the same eigenvalue. They could be used for several quantum information processing tasks such as error correction, preparation by measurement, and one-way quantum computing. Achieving QND measurements of photons is especially challenging because the detector must be completely transparent to the photons while still acquiring information about them. Recent progress in manipulating microwave photons in superconducting circuits has increased demand for a QND detector which operates in the gigahertz frequency range. Here we demonstrate a QND detection scheme which measures the number of photons inside a high quality-factor microwave cavity on a chip. This scheme maps a photon number onto a qubit state in a single-shot via qubit-photon logic gates. We verify the operation of the device by analyzing the average correlations of repeated measurements, and show that it is 90% QND. It differs from previously reported detectors because its sensitivity is strongly selective to chosen photon number states. This scheme could be used to monitor the state of a photon-based memory in a quantum computer.
We study a single-mode cavity weakly coupled to a voltage-biased quantum point contact. In a perturbative analysis, the lowest order predicts a thermal state for the cavity photons, driven by the emission noise of the conductor. The cavity is thus emptied as all transmission probabilities of the quantum point contact approach one or zero. Two-photon processes are identified at higher coupling, and pair absorption dominates over pair emission for all bias voltages. As a result, the number of cavity photons, the cavity damping rate and the second order coherence $g^{(2)}$ are all reduced and exhibit less bunching than the thermal state. These results are obtained with a Keldysh path integral formulation and reproduced with rate equations. They can be seen as a backaction of the cavity measuring the electronic noise. Extending the standard $P(E)$ theory to a steady-state situation, we compute the modified noise properties of the conductor and find quantitative agreement with the perturbative calculation.
Building a quantum repeater network for long distance quantum communication requires photons and quantum registers that comprise qubits for interaction with light, good memory capabilities and processing qubits for storage and manipulation of photons. Here we demonstrate a key step, the coherent transfer of a photon in a single solid-state nuclear spin qubit with an average fidelity of 98% and storage over 10 seconds. The storage process is achieved by coherently transferring a photon to an entangled electron-nuclear spin state of a nitrogen vacancy centre in diamond, confirmed by heralding through high fidelity single-shot readout of the electronic spin states. Stored photon states are robust against repetitive optical writing operations, required for repeater nodes. The photon-electron spin interface and the nuclear spin memory demonstrated here constitutes a major step towards practical quantum networks, and surprisingly also paves the way towards a novel entangled photon source for photonic quantum computing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا