Do you want to publish a course? Click here

Electron-photon interaction in a quantum point contact coupled to a microwave resonator

113   0   0.0 ( 0 )
 Added by Udson C. Mendes
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a single-mode cavity weakly coupled to a voltage-biased quantum point contact. In a perturbative analysis, the lowest order predicts a thermal state for the cavity photons, driven by the emission noise of the conductor. The cavity is thus emptied as all transmission probabilities of the quantum point contact approach one or zero. Two-photon processes are identified at higher coupling, and pair absorption dominates over pair emission for all bias voltages. As a result, the number of cavity photons, the cavity damping rate and the second order coherence $g^{(2)}$ are all reduced and exhibit less bunching than the thermal state. These results are obtained with a Keldysh path integral formulation and reproduced with rate equations. They can be seen as a backaction of the cavity measuring the electronic noise. Extending the standard $P(E)$ theory to a steady-state situation, we compute the modified noise properties of the conductor and find quantitative agreement with the perturbative calculation.



rate research

Read More

We consider the coupling of a single mode microwave resonator to a tunnel junction whose contacts are at thermal equilibrium. We derive the quantum master equation describing the evolution of the resonator field in the strong coupling regime, where the characteristic impedance of the resonator is larger than the quantum of resistance. We first study the case of a normal-insulator-normal junction and show that a dc driven single photon source can be obtained. We then consider the case of a superconductor-insulator-normal and superconductor-insulator-superconductor junction. There, we show that the Lamb shift induced by the junction gives rise to a nonlinear spectrum of the resonator even when the junction induced losses are negligible. We discuss the resulting dynamics and consider possible applications including quantum Zeno dynamics and the realization of a qubit.
265 - Po-Wen Chen , Chung-Chin Jian , 2011
We study the dynamics of a nanomechanical resonator (NMR) subject to a measurement by a low transparency quantum point contact (QPC) or tunnel junction in the non-Markovian domain. We derive the non-Markovian number-resolved (conditional) and unconditional master equations valid to second order in the tunneling Hamiltonian without making the rotating-wave approximation and the Markovian approximation, generally made for systems in quantum optics. Our non-Markovian master equation reduces, in appropriate limits, to various Markovi
125 - T. Frey , P. J. Leek , M. Beck 2011
Quantum coherence in solid-state systems has been demonstrated in superconducting circuits and in semiconductor quantum dots. This has paved the way to investigate solid-state systems for quantum information processing with the potential benefit of scalability compared to other systems based on atoms, ions and photons. Coherent coupling of superconducting circuits to microwave photons, circuit quantum electrodynamics (QED), has opened up new research directions and enabled long distance coupling of qubits. Here we demonstrate how the electromagnetic field of a superconducting microwave resonator can be coupled to a semiconductor double quantum dot. The charge stability diagram of the double dot, typically measured by direct current (DC) transport techniques, is investigated via dispersive frequency shifts of the coupled resonator. This hybrid all-solid-state approach offers the potential to coherently couple multiple quantum dot and superconducting qubits together on one chip, and offers a method for high resolution spectroscopy of semiconductor quantum structures.
Microwave-frequency superconducting resonators are ideally suited to perform dispersive qubit readout, to mediate two-qubit gates, and to shuttle states between distant quantum systems. A prerequisite for these applications is a strong qubit-resonator coupling. Strong coupling between an electron-spin qubit and a microwave resonator can be achieved by correlating spin- and orbital degrees of freedom. This correlation can be achieved through the Zeeman coupling of a single electron in a double quantum dot to a spatially inhomogeneous magnetic field generated by a nearby nanomagnet. In this paper, we consider such a device and estimate spin-resonator couplings of order ~ 1 MHz with realistic parameters. Further, through realistic simulations, we show that precise placement of the double dot relative to the nanomagnet allows to select between a purely longitudinal coupling (commuting with the bare spin Hamiltonian) and a purely transverse (spin non-conserving) coupling. Additionally, we suggest methods to mitigate dephasing and relaxation channels that are introduced in this coupling scheme. This analysis gives a clear route toward the realization of coherent state transfer between a microwave resonator and a single electron spin in a GaAs double quantum dot with a fidelity above 90%. Improved dynamical decoupling sequences, low-noise environments, and longer-lived microwave cavity modes may lead to substantially higher fidelities in the near future.
We propose a current correlation spectrum approach to probe the quantum behaviors of a nanome-chanical resonator (NAMR). The NAMR is coupled to a double quantum dot (DQD), which acts as a quantum transducer and is further coupled to a quantum-point contact (QPC). By measuring the current correlation spectrum of the QPC, shifts in the DQD energy levels, which depend on the phonon occupation in the NAMR, are determined. Quantum behaviors of the NAMR could, thus, be observed. In particular, the cooling of the NAMR into the quantum regime could be examined. In addition, the effects of the coupling strength between the DQD and the NAMR on these energy shifts are studied. We also investigate the impacts on the current correlation spectrum of the QPC due to the backaction from the charge detector on the DQD.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا