Do you want to publish a course? Click here

Protons in lattice confinement: Static pressure on the Y-substituted, hydrated BaZrO3 ceramic proton conductor decreases proton mobility

115   0   0.0 ( 0 )
 Added by Artur Braun
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Yttrium substituted BaZrO3, with nominal composition BaZr0.9Y0.1O3, a ceramic proton conductor, was subject to impedance spectroscopy for temperatures 300 K < T < 715 K at mechanical pressures 1 GPa < p < 2 GPa. The activation energies Ea of bulk and grain boundary conductivity from two perovskites synthesized by solid-state reaction and sol-gel method were determined under high pressures. At high temperature, the bulk activation energy increases with pressure by 5% for sol-gel derived sample and by 40% for solid-state derived sample. For the sample prepared by solid-state reaction, there is a large gap of 0.17 eV between the activation energy at 1.0 GPa and > 1.2 GPa. The grain boundary activation energy is around a factor two times as that of the bulk, and it reaches a maximum at 1.25 - 1.5 GPa, and then decrease as the pressure increases, indicating higher proton mobility in the grain boundaries at higher pressure. Since this effect is not reversible, it is suggested that the grain boundary resistance decreases as a result of pressure induced sintering. The steady increase of the bulk resistivity upon pressurizing suggests that the proton mobility depends on the space available in the lattice. In return, an expanded lattice with a/a0 > 1 should thus have a lower activation energy, suggesting that thin films expansive tensile strain could have a larger proton conductivity with desirable properties for applications.



rate research

Read More

The thermally activated proton diffusion in BaZr0.9Y0.1O3-{delta} was studied with electrochemical impedance spectroscopy (IS) and quasi-elastic neutron scattering (QENS) in the temperature range from 300 K to 900 K. The diffusivities for the bulk material and the grain boundaries as obtained by IS obey an Arrhenius law with activation energies of 0.46 eV and 1.21 eV, respectively. The activation energies obtained by IS for the bulk are 0.26 eV above 700 K and 0.46 eV, below 700 K. The total diffusivity as obtained by IS is by one order of magnitude lower than the microscopic diffusivity as obtained by QENS. The activation energies obtained by QENS are 0.13 eV above 700 K and 0.04 eV, below 700 K. At about 700 K, the diffusion constants for IS and QENS have a remarkable crossover, suggesting two processes with different activation energies.
The BaCe0.8Y0.2O3-{delta} proton conductor under hydration and under compressive strain has been analyzed with high pressure Raman spectroscopy and high pressure x-ray diffraction. The pressure dependent variation of the Ag and B2g bending modes from the O-Ce-O unit is suppressed when the proton conductor is hydrated, affecting directly the proton transfer by locally changing the electron density of the oxygen ions. Compressive strain causes a hardening of the Ce-O stretching bond. The activation barrier for proton conductivity is raised, in line with recent findings using high pressure and high temperature impedance spectroscopy. The increasing Raman frequency of the B1g and B3g modes thus implies that the phonons become hardened and increase the vibration energy in the a-c crystal plane upon compressive strain, whereas phonons are relaxed in the b-axis, and thus reveal softening of the Ag and B2g modes. Lattice toughening in the a-c crystal plane raises therefore a higher activation barrier for proton transfer and thus anisotropic conductivity. The experimental findings of the interaction of protons with the ceramic host lattice under external strain may provide a general guideline for yet to develop epitaxial strained proton conducting thin film systems with high proton mobility and low activation energy.
Atomic and electronic structures of Cu2H and CuH have been investigated by high pressure NMR spectroscopy, X-ray diffraction and ab-initio calculations. Metallic Cu2H was synthesized at a pressure of 40 GPa, and semi-metallic CuH at 90 GPa, found stable up to 160 GPa. Experiments and computations suggest the formation of a metallic 1H-sublattice as well as a high 1H mobility of ~10-7 cm2/s in Cu2H. Comparison of Cu2H and FeH data suggests that deviations from Fermi gas behavior, formation of conductive hydrogen networks, and high 1H mobility could be common features of metal hydrides.
We apply inline electron holography to investigate the electrostatic potential across an individual BaZr0.9Y0.1O3 grain boundary. With holography, we measure a grain boundary potential of -1.3 V. Electron energy loss spectroscopy analyses indicate that barium vacancies at the grain boundary are the main contributors to the potential well in this sample. Furthermore, geometric phase analysis and density functional theory calculations suggest that reduced atomic density at the grain boundary also contributes to the experimentally measured potential well.
The effect of substituting Rh in CeRh1-xPdxIn5 with Pd up to x = 0.25 has been studied on single crystals. The crystals have been grown by means of the In self-flux method and characterized by x-ray diffraction and microprobe. The tetragonal HoCoGa5-type of structure and the c/a ratio of the parent compound remains intact by the Pd substitution; the unit cell volume increases by 0.6 % with x = 0.25 of Pd. The low-temperature behavior of resistivity was studied also under hydrostatic pressure up to 2.25 GPa. The Pd substitution for Rh affects the magnetic behavior and the maximum value of the superconducting transition temperature measured at pressures above 2 GPa only negligibly. On the other hand, the results provide evidence that superconductivity in CeRh0.75Pd0.25In5 is induced at significantly lower pressures, i.e. the Pd substitution for Rh shifts the CeRh1-xPdxIn5 system closer to coexistence of magnetism and superconductivity at ambient pressure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا