We apply inline electron holography to investigate the electrostatic potential across an individual BaZr0.9Y0.1O3 grain boundary. With holography, we measure a grain boundary potential of -1.3 V. Electron energy loss spectroscopy analyses indicate that barium vacancies at the grain boundary are the main contributors to the potential well in this sample. Furthermore, geometric phase analysis and density functional theory calculations suggest that reduced atomic density at the grain boundary also contributes to the experimentally measured potential well.
A detailed theoretical and numerical investigation of the infinitesimal single-crystal gradient plasticity and grain-boundary theory of Gurtin (2008) A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. Journal of the Mechanics and Physics of Solids 56 (2), 640-662, is performed. The governing equations and flow laws are recast in variational form. The associated incremental problem is formulated in minimization form and provides the basis for the subsequent finite element formulation. Various choices of the kinematic measure used to characterize the ability of the grain boundary to impede the flow of dislocations are compared. An alternative measure is also suggested. A series of three-dimensional numerical examples serve to elucidate the theory.
We describe a molecular dynamics framework for the direct calculation of the short-ranged structural forces underlying grain-boundary premelting and grain-coalescence in solidification. The method is applied in a comparative study of (i) a Sigma 9 <115> 120 degress twist and (ii) a Sigma 9 <110> {411} symmetric tilt boundary in a classical embedded-atom model of elemental Ni. Although both boundaries feature highly disordered structures near the melting point, the nature of the temperature dependence of the width of the disordered regions in these boundaries is qualitatively different. The former boundary displays behavior consistent with a logarithmically diverging premelted layer thickness as the melting temperature is approached from below, while the latter displays behavior featuring a finite grain-boundary width at the melting point. It is demonstrated that both types of behavior can be quantitatively described within a sharp-interface thermodynamic formalism involving a width-dependent interfacial free energy, referred to as the disjoining potential. The disjoining potential for boundary (i) is calculated to display a monotonic exponential dependence on width, while that of boundary (ii) features a weak attractive minimum. The results of this work are discussed in relation to recent simulation and theoretical studies of the thermodynamic forces underlying grain-boundary premelting.
Grain boundary wetting as a preliminary stage for zinc induced grain boundary weakening and embrittlement in a Zn coated press hardened 20MnB8 steel was analyzed by means of electron backscatter diffraction, Auger electron spectroscopy, energy dispersive X-ray analysis and transmission electron microscopy on the nanometer scale. Microcracks at prior austenite grains boundaries were observed and structures developed after microcrack formation were identified. Zn/Fe intermetallic phases, smaller than 100 nm in size, are present at the crack surfaces and at the wedge-shaped crack tips. In order to get a complete picture, including the microstructure before cracking, an undeformed, electrolytically coated reference sample which underwent the same heat treatment as the press hardened material was investigated. Here, Zn, in the order of one atomic layer or less, could be found along prior austenite grain boundaries several micrometer away from the actual Zn/Fe phases in the coating. From this, we conclude that grain boundary weakening by Zn wetting of prior austenitic grain boundaries cannot be ruled out as necessary condition for microcrack formation from a physical characterization point of view.
Mg grain boundary (GB) segregation and GB diffusion can impact the processing and properties of Al-Mg alloys. Yet, Mg GB diffusion in Al has not been measured experimentally or predicted by simulations. We apply atomistic computer simulations to predict the amount and the free energy of Mg GB segregation, and the impact of segregation on GB diffusion of both alloy components. At low temperatures, Mg atoms segregated to a tilt GB form clusters with highly anisotropic shapes. Mg diffuses in Al GBs slower than Al itself, and both components diffuse slowly in comparison with Al GB self-diffusion. Thus, Mg segregation significantly reduces the rate of mass transport along GBs in Al-Mg alloys. The reduced atomic mobility can be responsible for the improved stability of the microstructure at elevated temperatures.
While it is known that alloy components can segregate to grain boundaries (GBs), and that the atomic mobility in GBs greatly exceeds the atomic mobility in the lattice, little is known about the effect of GB segregation on GB diffusion. Atomistic computer simulations offer a means of gaining insights into the segregation-diffusion relationship by computing the GB diffusion coefficients of the alloy components as a function of their segregated amounts. In such simulations, thermodynamically equilibrium GB segregation is prepared by a semi-grand canonical Monte Carlo method, followed by calculation of the diffusion coefficients of all alloy components by molecular dynamics. As a demonstration, the proposed methodology is applied to a GB is the Cu-Ag system. The GB diffusivities obtained exhibit non-trivial composition dependencies that can be explained by site blocking, site competition, and the onset of GB disordering due to the premelting effect.
Tarjei Bondevik
,Heine Ness
,Calliope Bazioti
.
(2019)
.
"Investigation of the electrostatic potential of a grain boundary in Y-substituted BaZrO3 using inline electron holography"
.
{\\O}ystein Prytz
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا