Do you want to publish a course? Click here

Evolution of an oxygen NEXAFS transition in the upper Hubbard band in {alpha}-Fe2O3 upon electrochemical oxidation

131   0   0.0 ( 0 )
 Added by Artur Braun
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electrochemical oxidation of hematite ({alpha}-Fe2O3) nano-particulate films at 600 mV vs. Ag+/AgCl reference in KOH electrolyte forms a species at the hematite surface which causes a new transition in the upper Hubbard band between the Fe(3d)-O(2p) state region and the Fe(4sp)-O(2p) region, as evidenced by oxygen near edge x-ray absorption fine structure (NEXAFS) spectra. The electrochemical origin of this transition suggests that it is related with a surface state. This transition, not known for pristine {alpha}-Fe2O3 is at about the same x-ray energy, where pristine 1% Si doped Si:Fe2O3 has such transition. Occurrence of this state coincides with the onset of an oxidative dark current wave at around 535 mV - a potential range, where the tunneling exchange current has been previously reported to increase by three orders of magnitude with the valence band and the transfer coefficient by a factor of 10. Oxidation to only 200 mV does not form such extra NEXAFS feature, supporting that a critical electrochemical potential between 200 and 600 mV is necessary to change the electronic structure of the iron oxide at the surface. Decrease of the surface roughness, as suggested by visual inspection, profilometry and x-ray reflectivity, points to faceting as potential structural origin of the surface state.



rate research

Read More

Iron resonant valance band photoemission spectra of Sr substituted LaFe0.75Ni0.25 O3-{delta} have been recorded across the Fe 2p - 3d absorption threshold to obtain Fe specific spectral information on the 3d projected partial density of states. Comparison with La1-xSrxFeO3 resonant VB PES literature data suggests that substitution of Fe by Ni forms electron holes which are mainly O 2p character. Substitution of La by Sr increases the hole concentration to an extent that the eg structure vanishes. The variation of the eg and t2g structures is paralleled by the changes in the electrical conductivity.
612 - Jun Wang , Victor Aguilar , Le Li 2013
Single-crystalline alpha-Fe2O3 nanorings (short nanotubes) and nanotubes were synthesized by a hydrothermal method. High-resolution transmission electron microscope and selected-area electron diffraction confirm that the axial directions of both nanorings and nanotubes are parallel to the crystalline c-axis. What is intriguing is that the Morin transition occurs at about 210 K in the short nanotubes with a mean tube length of about 115 nm and a mean outer diameter of 169 nm while it disappears in the nanotubes with a mean tube length of about 317 nm and a mean outer diameter of 148 nm. Detailed analyses of magnetization data, x-ray diffraction spectra, and room-temperature Mossbauer spectra demonstrate that this very strong shape dependence of the Morin transition is intrinsic to hematite. We can quantitatively explain this intriguing shape dependence in terms of opposite signs of the surface magnetic anisotropy constants in the surface planes parallel and perpendicular to the c-axis (that is, K_parallel = -0.37 erg/cm^2 and K_perp = 0.42 erg/cm^{2}).
The combination of bandstructure theory in the local density approximation with dynamical mean field theory was recently successfully applied to V$_2$O$_3$ -- a material which undergoes the f amous Mott-Hubbard metal-insulator transition upon Cr doping. The aim of this sh ort paper is to emphasize two aspects of our recent results: (i) the filling of the Mott-Hubbard gap with increasing temperature, and (ii) the peculiarities of the Mott-Hubbard transition in this system which is not characterized by a diver gence of the effective mass for the $a_{1g}$-orbital.
The oxygen-deficient perovskite cobaltite SrCo1-xNbxO3-d was synthesized by direct solid-state reaction and its magnetotransport properties were investigated. This cobaltite exhibits an unusual ferromagnetic behavior with a transition temperature Tm = 130-150 K and a spin glass like behavior below Tm. Importantly, this phase reaches a large magnetoresistance (MR) value, MR = -(rH - r0) / r0 = 30% at 5 K in 7 T. The large MR effect is believed to be related to the disordered magnetic state induced by the Nb-for-Co substitution.
Magnetism of transition metal (TM) oxides is usually described in terms of the Heisenberg model, with orientation-independent interactions between the spins. However, the applicability of such a model is not fully justified for TM oxides because spin polarization of oxygen is usually ignored. In the conventional model based on the Anderson principle, oxygen effects are considered as a property of the TM ion and only TM interactions are relevant. Here, we perform a systematic comparison between two approaches for spin polarization on oxygen in typical TM oxides. To this end, we calculate the exchange interactions in NiO, MnO, and hematite (Fe2O3) for different magnetic configurations using the magnetic force theorem. We consider the full spin Hamiltonian including oxygen sites, and also derive an effective model where the spin polarization on oxygen renormalizes the exchange interactions between TM sites. Surprisingly, the exchange interactions in NiO depend on the magnetic state if spin polarization on oxygen is neglected, resulting in non-Heisenberg behavior. In contrast, the inclusion of spin polarization in NiO makes the Heisenberg model more applicable. Just the opposite, MnO behaves as a Heisenberg magnet when oxygen spin polarization is neglected, but shows strong non-Heisenberg effects when spin polarization on oxygen is included. In hematite, both models result in non-Heisenberg behavior. General applicability of the magnetic force theorem as well as the Heisenberg model to TM oxides is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا