Do you want to publish a course? Click here

Exchange interactions in transition metal oxides: The role of oxygen spin polarization

151   0   0.0 ( 0 )
 Added by Remko Logemann
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetism of transition metal (TM) oxides is usually described in terms of the Heisenberg model, with orientation-independent interactions between the spins. However, the applicability of such a model is not fully justified for TM oxides because spin polarization of oxygen is usually ignored. In the conventional model based on the Anderson principle, oxygen effects are considered as a property of the TM ion and only TM interactions are relevant. Here, we perform a systematic comparison between two approaches for spin polarization on oxygen in typical TM oxides. To this end, we calculate the exchange interactions in NiO, MnO, and hematite (Fe2O3) for different magnetic configurations using the magnetic force theorem. We consider the full spin Hamiltonian including oxygen sites, and also derive an effective model where the spin polarization on oxygen renormalizes the exchange interactions between TM sites. Surprisingly, the exchange interactions in NiO depend on the magnetic state if spin polarization on oxygen is neglected, resulting in non-Heisenberg behavior. In contrast, the inclusion of spin polarization in NiO makes the Heisenberg model more applicable. Just the opposite, MnO behaves as a Heisenberg magnet when oxygen spin polarization is neglected, but shows strong non-Heisenberg effects when spin polarization on oxygen is included. In hematite, both models result in non-Heisenberg behavior. General applicability of the magnetic force theorem as well as the Heisenberg model to TM oxides is discussed.



rate research

Read More

The magnetic properties of the transition metal monoxides MnO and NiO are investigated at equilibrium and under pressure via several advanced first-principles methods coupled with Heisenberg Hamiltonian MonteCarlo. The comparative first-principles analysis involves two promising beyond-local density functionals approaches, namely the hybrid density functional theory and the recently developed variational pseudo-self-interaction correction method, implemented with both plane-wave and atomic-orbital basis sets. The advanced functionals deliver a very satisfying rendition, curing the main drawbacks of the local functionals and improving over many other previous theoretical predictions. Furthermore, and most importantly, they convincingly demonstrate a degree of internal consistency, despite differences emerging due to methodological details (e.g. plane waves vs. atomic orbitals)
We show that a class of compounds with $I$4/$mcm$ crystalline symmetry hosts three-dimensional semi-Dirac fermions. Unlike the known two-dimensional semi-Dirac points, the degeneracy of these three-dimensional semi-Dirac points is not lifted by spin-orbit coupling due to the protection by a nonsymmorphic symmetry -- screw rotation in the $a-b$ plane and a translation along the $c$ axis. This crystalline symmetry is found in tetragonal perovskite oxides, realizable in thin films by epitaxial strain that results in a$^0$a$^0$c$^-$-type octahedral rotation. Interestingly, with broken time-reversal symmetry, two pairs of Weyl points emerge from the semi-Dirac points within the Brillouin zone, and an additional lattice distortion leads to enhanced intrinsic anomalous Hall effect. We discuss possible fingerprints of this symmetry-protected band topology in electronic transport experiments.
We have performed systematic tight-binding (TB) analyses of the angle-resolved photoemission spectroscopy (ARPES) spectra of transition-metal (TM) oxides A$M$O$_3$ ($M=$ Ti, V, Mn, and Fe) with the perovskite-type structure and compared the obtained parameters with those obtained from configuration-interaction (CI) cluster-model analyses of photoemission spectra. The values of $epsilon_d-epsilon_p$ from ARPES are found to be similar to the charge-transfer energy $Delta$ from O $2p$ orbitals to empty TM 3d orbitals and much larger than $Delta-U/2$ ($U$: on-site Coulomb energy) expected for Mott-Hubbard-type compounds including SrVO$_3$. $epsilon_d-epsilon_p$ values from {it ab initio} band-structure calculations show similar behaviors to those from ARPES. The values of the $p-d$ transfer integrals to describe the global electronic structure are found to be similar in all the estimates, whereas additional narrowing beyond the TB description occurs in the ARPES spectra of the $d$ band.
Recent DFT calculations for Ba2CoO4 (BCO) and neutron scattering experiments for SrRuO3 (SRO) have shown that oxygen develops a magnetic polarization. Moreover, DFT calculations for these compounds also unveiled unexpected nodes in the spin density, both along Co-O and Ru-O. For BCO, the overall antiferromagnetic state in its triangular lattice contains unusual zigzag spin patterns. Here, using simple model calculations supplemented by DFT we explain and extend these results. We predict that ligands that in principle should be spinless, such as O$^{2-}$, will develop a net polarization when they act as electronic bridges between transition metal (TM) spins ferromagnetically ordered, regardless of the number of intermediate ligand atoms. The reason is the hybridization between atoms and mobility of the electrons with spins opposite to those of the closest TM atoms. Moreover, for bonds with TMs antiferromagnetically ordered, counterintuitively our calculations show that oxygens should also have a net magnetization for the super-super-exchange cases TM-O-O-TM while for only one oxygen, as in Cu-O-Cu, the O-polarization should cancel. Our simple model also allows us to explain the presence of nodes based on the antibonding character of the dominant singly occupied molecular orbitals along the TM-O bonds. Finally, the zigzag pattern order becomes the ground state mainly due to the influence of the Hubbard $U$, that creates the moments, in combination with a robust easy-axis anisotropy that suppresses the competing 120$^{circ}$ degree antiferromagnetic order of a triangular lattice. Our predictions are generic and should be applicable to any other compound with characteristics similar to those of BCO and SRO.
During the last decade, ab initio methods to calculate electronic structure of materials based on hybrid functionals are increasingly becoming widely popular. In this Letter, we show that, in the case of small gap transition metal oxides, such as VO2, with rather subtle physics in the vicinity of the Fermi-surface, such hybrid functional schemes without the inclusion of expensive fully self-consistent GW corrections fail to yield this physics and incorrectly describe the features of the wave function of states near the Fermi-surface. While a fully self-consistent GW on top of hybrid functional approach does correct these wave functions as expected, and is found to be in general agreement with the results of a fully self-consistent GW approach based on semilocal functionals, it is much more computationally demanding as compared to the latter approach for the benefit of essentially the same results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا