Do you want to publish a course? Click here

The role of oxygen and surface reactions in the deposition of silicon oxide like films from HMDSO at atmospheric pressure

100   0   0.0 ( 0 )
 Added by Jan Benedikt
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The deposition of thin SiO$_x$C$_y$H$_z$ or SiO$_x$H$_y$ films by means of atmospheric pressure microplasma jets with admixture of Hexamethyldisiloxane (HMDSO) and oxygen and the role of surface reactions in film growth are investigated. Two types of microplasma jets, one with a planar electrodes and operated in helium gas and the other one with a coaxial geometry operated in argon, are used to study the deposition process. The growth rate of the film and the carbon-content in the film are measured as a function of the O$_2$ and HMDSO admixture in the planar jet and are compared to mass spectrometry measurements of the consumption of HMDSO. Additionally, the localized nature of the jet-substrate interaction is utilized to study surface reactions by applying two jets on a rotating substrate. The addition of oxygen into the gas mixture increases HMDSO depletion and the growth rate and results in the deposition of carbon free films. The surface reaction is responsible for the carbon removal from the growing film. Moreover, carbon free films can be deposited even without addition of oxygen, when coaxial jet operated with argon is used for the surface treatment. We hypothesize that ions or excited species (metastables) could be responsible for the observed effect.



rate research

Read More

386 - Y. Xu , S. A. Khrapak , K. Ding 2019
Nanoparticles grown in a plasma are used to visualize the process of film deposition in a pulsed radio-frequency (rf) atmospheric pressure glow discharge. Modulating the plasma makes it possible to successfully prepare porous TiO2 films. We study the trapping of the particles in the sheath during the plasma-on phase and compare it with numerical simulations. During the plasma-off phase, the particles are driven to the substrate by the electric field generated by residual ions, leading to the formation of porous TiO2 film. Using video microscopy, the collective dynamics of particles in the whole process is revealed at the most fundamental kinetic level.
135 - M. Hoek , F. Coneri , D.P. Leusink 2015
We show that the quality of Nd1.85Ce0.15CuO4 films grown by pulsed laser deposition can be enhanced by using a non-stoichiometric target with extra copper added to suppress the formation of a parasitic (Nd, Ce)2O3 phase. The properties of these films are less dependent on the exact annealing procedure after deposition as compared to films grown from a stoichiometric target. Film growth can be followed by a 1 bar oxygen annealing, after an initial vacuum annealing, while retaining the superconducting properties and quality. This enables the integration of electron-doped cuprates with their hole-doped counterparts on a single chip, to create, for example, superconducting pn-junctions.
In this paper, a method is presented to create and characterize mechanically robust, free standing, ultrathin, oxide films with controlled, nanometer-scale thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films were deposited onto suspended graphene membranes using ALD. Subsequent etching of the graphene left pure aluminum oxide films only a few atoms in thickness. A pressurized blister test was used to determine that these ultrathin films have a Youngs modulus of 154 pm 13 GPa. This Youngs modulus is comparable to much thicker alumina ALD films. This behavior indicates that these ultrathin two-dimensional films have excellent mechanical integrity. The films are also impermeable to standard gases suggesting they are pinhole-free. These continuous ultrathin films are expected to enable new applications in fields such as thin film coatings, membranes and flexible electronics.
The substrate temperature required for synthesis of graphene in an arc discharge plasma was studied. It was shown that an increase of copper substrate temperature up to the melting point leads to an increase in the amount of graphene production and the quality of graphene sheets. Favorable range of substrate temperatures for arc-based graphene synthesis was determined, and it is in a relatively narrow range of about 1210-1340 K.
The apparent anomaly in the ratio of muon to electron atmospheric neutrinos first observed by Kamiokande and IMB has been confirmed by Super-Kamiokande and Soudan-2. The experimental analysis, including the asymmetry in the zenithal distributions of the $ mu-mathrm{type} $ events in Super-Kamiokande gives a strong support to the neutrino oscillation hypothesis to solve the anomaly. In this work we are interested by the role of nuclear physics in the neutrino-oxygen reactions used to detect the atmospheric neutrinos. We point out that multi-nucleon excitations of np-nh type and that nuclear correlations could modify an experimental analysis `a la Super-Kamiokande because they lead to a substantial enhancement of the number of 1 v{C}erenkov ring retained events.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا