Do you want to publish a course? Click here

Zitterbewegung and its significance for the Hawking radiation

136   0   0.0 ( 0 )
 Added by Zhi-Yong Wang
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Hawking radiation can be viewed from very different perspectives, not all of which can be proved to be rigorously equivalent to one another. On the other hand, an old interest in the zitterbewegung (ZB) of the Dirac electron has recently been rekindled by the investigations on spintronics and graphene, etc. In this letter, we show that, if particles emitted by black holes are electrons or positrons, one can also regard the Hawking radiation as a ZB process.



rate research

Read More

In term of the volume-integrated Poynting vector, we present a quantum field-theory investigation on the zitterbewegung (ZB) of photons, and show that this ZB occurs only in the presence of virtual longitudinal and scalar photons. To present a heuristic explanation for such ZB, by assuming that the space time is sufficiently close to the flat Minkowski space, we show that the gravitational interaction can result in the ZB of photons.
419 - W. G. Unruh , R. Schutzhold 2012
Belgiorno et al have reported on experiments aiming at the detection of (the analogue of) Hawking radiation using laser filaments [F. Belgiorno et al, Phys. Rev. Lett. 105, 203901 (2010)]. They sent intense focused Bessel pulses into a non-linear dielectric medium in order to change its refractive index via the Kerr effect and saw creation of photons orthogonal to the direction of travel of the pluses. Since the refractive index change in the pulse generated a phase horizon (where the phase velocity of these photons equals the pulse speed), they concluded that they observed the analogue of Hawking radiation. We study this scenario in a model with a phase horizon and a phase velocity very similar to that of their experiment and find that the effective metric does not quite correspond to a black hole. The photons created in this model are not due to the analogue of black hole evaporation but have more similarities to cosmological particle creation. Nevertheless, even this effect cannot explain the observations -- unless the pulse has significant small scale structure in both the longitudinal and transverse dimensions.
372 - Ralf Schutzhold 2011
Motivated by recent experimental progress to manipulate the refractive index of dielectric materials by strong laser beams, we study some aspects of the quantum radiation created by such refractive index perturbations.
150 - Rabin Banerjee 2008
Hawking radiation is obtained from anomalies resulting from a breaking of diffeomorphism symmetry near the event horizon of a black hole. Such anomalies, manifested as a nonconservation of the energy momentum tensor, occur in two different forms -- covariant and consistent. The crucial role of covariant anomalies near the horizon is revealed since this is the {it only} input required to obtain the Hawking flux, thereby highlighting the universality of this effect. A brief description to apply this method to obtain thermodynamic entities like entropy or temperature is provided.
63 - Yu-Lei Feng , Yi-Xin Chen 2015
We show that for the thermal spectrum of Hawking radiation black holes information loss paradox may still be present, even if including the entanglement information stored in the entangled Minkowski vacuum. And to avoid this inconsistency, the spectrum of Hawking radiation must be nonthermal. After reconsidering the derivation of Hawking effect, we find that the thermal spectrum is actually resulted from the geometric optics approximation in deriving the Bogolubov coefficients. When treated a little more accurately, we obtain some nonthermal spectrum for the Hawing radiation, which reduces to the thermal one in the geometric optics approximation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا