No Arabic abstract
We show that for the thermal spectrum of Hawking radiation black holes information loss paradox may still be present, even if including the entanglement information stored in the entangled Minkowski vacuum. And to avoid this inconsistency, the spectrum of Hawking radiation must be nonthermal. After reconsidering the derivation of Hawking effect, we find that the thermal spectrum is actually resulted from the geometric optics approximation in deriving the Bogolubov coefficients. When treated a little more accurately, we obtain some nonthermal spectrum for the Hawing radiation, which reduces to the thermal one in the geometric optics approximation.
We consider the island formula for the entropy of subsets of the Hawking radiation in the adiabatic limit where the evaporation is very slow. We find a simple concrete `on-shell formula for the generalized entropy which involves the image of the island out in the stream of radiation, the `island in the stream. The resulting recipe for the entropy allows us to calculate the quantum information properties of the radiation and verify various constraints including the Araki-Lieb inequality and strong subadditivity.
Hawking radiation is obtained from anomalies resulting from a breaking of diffeomorphism symmetry near the event horizon of a black hole. Such anomalies, manifested as a nonconservation of the energy momentum tensor, occur in two different forms -- covariant and consistent. The crucial role of covariant anomalies near the horizon is revealed since this is the {it only} input required to obtain the Hawking flux, thereby highlighting the universality of this effect. A brief description to apply this method to obtain thermodynamic entities like entropy or temperature is provided.
Hawking radiation of the blackhole is calculated based on the principle of local field theory. In our approach, the radiation is a unitary process, therefore no information loss will be recorded. In fact, observers in different regions of the space communicate using the Hawking radiation, when the systems in the different regions are entangled with each other. The entanglement entropy of the blackhole is also calculated in the local field theory. We found that the entanglement entropy of the systems separated by the blackhole horizon is closely connected to the Hawking radiation in our approach. Our calculation shows that the entanglement entropy of the systems separated by the horizon of a blackhole is just a pure number $frac{pi^3 + 270 zeta(3)}{360 pi^2}$, independent of any parameter of the blackhole, and its relation to the Hawking radiation is given by $S_{EE} = frac{8 pi}{3} frac{pi^3 + 270 zeta(3)}{pi^3 + 240 zeta(3)} {cal A} R_H$, where $S_{EE}$ is the entanglement entropy, $cal A$ is the area of the horizon, and $R_H$ is the Hawking radiation.
We comment on the consistence of the epsilon anti-symmetric tensor adopted in [R. Banerjee and S. Kulkarni, arXiv:0707.2449] when it is generalized in the general case where $sqrt{-g} eq 1$. It is pointed out that the correct non-minimal consistent gauge and gravitational anomalies should by multiplied a factor $sqrt{-g} eq 1$. We also sketch the generalization of their work to the $sqrt{-g} eq 1$ case.
By entangling soft massless particles one can create an arbitrarily large amount of entanglement entropy that carries an arbitrarily small amount of energy. Dropping this entropy into the black hole (b.h.) one can increase the b.h. entropy by an amount that violates Bekenstein bound or any other reasonable bound, leading to a version of b.h. information paradox that does not involve Hawking radiation. Among many proposed solutions of the standard b.h. information paradox with Hawking radiation, only a few can also resolve this version without the Hawking radiation. The assumption that bo