Do you want to publish a course? Click here

The influence of non-isotropic scattering of thermal radiation on spectra of brown dwarfs and hot exoplanets

115   0   0.0 ( 0 )
 Added by Remco de Kok
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

(abridged) We calculate near-infrared thermal emission spectra using a doubling-adding radiative transfer code, which includes scattering by clouds and haze. Initial temperature profiles and cloud optical depths are taken from the drift-phoenix brown dwarf model. As is well known, cloud particles change the spectrum compared to when clouds are ignored. The clouds reduce fluxes in the near-infrared spectrum and make it redder than for the clear sky case. We also confirm that not including scattering in the spectral calculations can result in errors on the spectra of many tens of percent, both in magnitude and in variations with wavelength. This is especially apparent for particles that are larger than the wavelength and only have little iron in them. Scattering particles will show deeper absorption features than absorbing (e.g. iron) particles and particle size will also affect the calculated infrared colours. Large particles also tend to be strongly forward-scattering, and we show that assuming isotropic scattering in this case also leads to very large errors in the spectrum. Thus, care must be taken in the choice of radiative transfer method for heat balance or spectral calculations when clouds are present in the atmosphere. Besides the choice of radiative transfer method, the type of particles that are predicted by models will change conclusions about e.g. infrared colours and trace gas abundances. As a result, knowledge of the scattering properties of the clouds is essential when deriving temperature profiles or gas abundances from direct infrared observations of exoplanets or brown dwarfs and from secondary eclipse measurements of transiting exoplanets, since scattering clouds will change the depth of gas absorption features, among other things. Thus, ignoring the presence of clouds can yield retrieved properties that differ significantly from the real atmospheric properties.



rate research

Read More

Observations and models suggest that the conditions to develop lightning may be present in cloud-forming extrasolar planetary and brown dwarf atmospheres. Whether lightning on these objects is similar to or very different from what is known from the Solar System awaits answering as lightning from extrasolar objects has not been detected yet. We explore terrestrial lightning parameterisations to compare the energy radiated and the total radio power emitted from lightning discharges for Earth, Jupiter, Saturn, extrasolar giant gas planets and brown dwarfs. We find that lightning on hot, giant gas planets and brown dwarfs may have energies of the order of $10^{11}$--$10^{17}$ J, which is two to eight orders of magnitude larger than the average total energy of Earth lightning ($10^9$ J), and up to five orders of magnitude more energetic than lightning on Jupiter or Saturn ($10^{12}$ J), affirming the stark difference between these atmospheres. Lightning on exoplanets and brown dwarfs may be more energetic and release more radio power than what has been observed from the Solar System. Such energies would increase the probability of detecting lightning-related radio emission from an extrasolar body.
201 - A. Sozzetti 2014
In its all-sky survey, Gaia will monitor astrometrically and photometrically millions of main-sequence stars with sufficient sensitivity to brown dwarf companions within a few AUs from their host stars and to transiting brown dwarfs on very short periods, respectively. Furthermore, thousands of detected ultra-cool dwarfs in the backyard of the Sun will have direct (absolute) distance estimates from Gaia, and for these Gaia astrometry will be of sufficient precision to reveal any orbiting companions with masses as low as that of Jupiter. Gaia observations thus bear the potential for critical contributions to many important questions in brown dwarfs astrophysics (how do they form in isolation and as companions to stars? Can planets form around them? What are their fundamental parameters such as ages, masses, and radii? What is their atmospheric physics?), and their connection to stars and planets. The full legacy potential of Gaia in the realm of brown dwarf science will be realized when combined with other detection and characterization programs, both from the ground and in space.
Brown dwarfs are essential targets for understanding planetary and sub-stellar atmospheres across a wide range of thermal and chemical conditions. As surveys continue to probe ever deeper, and as observing capabilities continue to improve, the number of known Y dwarfs -- the coldest class of sub-stellar objects, with effective temperatures below about 600 K -- is rapidly growing. Critically, this class of ultra-cool objects has atmospheric conditions that overlap with Solar System worlds and, as a result, tools and ideas developed from studying Earth, Jupiter, Saturn and other nearby worlds are well-suited for application to sub-stellar atmospheres. To that end, we developed a one-dimensional (vertical) atmospheric structure model for ultra-cool objects that includes moist adiabatic convection, as this is an important process for many Solar System planets. Application of this model across a range of effective temperatures (350, 300, 250, 200 K), metallicities ([M/H] of 0.0, 0.5, 0.7, 1.5), and gravities (log $g$ of 4.0, 4.5, 4.7, 5.0) demonstrates strong impacts of water latent heat release on simulated temperature-pressure profiles. At the highest metallicities, water vapor mixing ratios reach an Earth-like 3%, with associated major alterations to the thermal structure in the atmospheric regions where water condenses. Spectroscopic and photometric signatures of metallicity and moist convection should be readily detectable at near- and mid-infrared wavelengths, especially with James Webb Space Telescope observations, and can help indicate the formation history of an object.
When searching for exoplanets and ultimately considering their habitability, it is necessary to consider the planets composition, geophysical processes, and geochemical cycles in order to constrain the bioessential elements available to life. Determining the elemental ratios for exoplanetary ecosystems is not yet possible, but we generally assume that planets have compositions similar to those of their host stars. Therefore, using the Hypatia Catalog of high-resolution stellar abundances for nearby stars, we compare the C, N, Si, and P abundance ratios of main sequence stars with those in average marine plankton, Earths crust, as well as bulk silicate Earth and Mars. We find that, in general, plankton, Earth, and Mars are N-poor and P-rich compared with nearby stars. However, the dearth of P abundance data, which exists for only ~1% of all stars and 1% of exoplanet hosts, makes it difficult to deduce clear trends in the stellar data, let alone the role of P in the evolution of an exoplanet. Our Sun has relatively high P and Earth biology requires a small, but finite, amount of P. On rocky planets that form around host stars with substantially less P, the strong partitioning of P into the core could rule out the potential for surface P and, consequently, for life on that planets surface. Therefore, we urge the stellar abundance community to make P observations a priority in future studies and telescope designs.
In recent years there have been many attempts to characterize the occurrence of stellar, BD and planetary-mass companions to solar-type stars, with the aim of constraining formation mechanisms. From RV observations a dearth of companions with masses between 10-40 MJup has been noticed at close separations, suggesting the possibility of a distinct formation mechanism for objects above and below this range. We present a model for the substellar companion mass function (CMF). It consists of the superposition of the planet and BD companion mass distributions, assuming that we can extrapolate the RV measured companion mass function for planets to larger separations and the stellar companion mass-ratio distribution over all separations into the BD mass regime. By using both the results of the VLT/NaCo large program and the complementary archive datasets that probe the occurrence of planets and BDs on wide orbits around solar-type stars, we place some constraints on the planet and BD distributions. We developed a MC simulation tool to predict the outcome of a given survey, depending on the shape of the orbital parameter distributions. Comparing the predictions with the results of the observations, we calculate how likely different models are and which can be ruled out. Current observations are consistent with the proposed model for the CMF, as long as a sufficiently small outer truncation radius is introduced for the planet separation distribution. The results of the direct imaging surveys searching for substellar companions around Sun-like stars are consistent with a combined substellar mass spectrum of planets and BDs. This mass distribution has a minimum between 10 and 50 MJup, in agreement with RV measurements. The dearth of objects in this mass range would naturally arise from the shape of the mass distribution, without the introduction of any distinct formation mechanism for BDs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا