No Arabic abstract
In its all-sky survey, Gaia will monitor astrometrically and photometrically millions of main-sequence stars with sufficient sensitivity to brown dwarf companions within a few AUs from their host stars and to transiting brown dwarfs on very short periods, respectively. Furthermore, thousands of detected ultra-cool dwarfs in the backyard of the Sun will have direct (absolute) distance estimates from Gaia, and for these Gaia astrometry will be of sufficient precision to reveal any orbiting companions with masses as low as that of Jupiter. Gaia observations thus bear the potential for critical contributions to many important questions in brown dwarfs astrophysics (how do they form in isolation and as companions to stars? Can planets form around them? What are their fundamental parameters such as ages, masses, and radii? What is their atmospheric physics?), and their connection to stars and planets. The full legacy potential of Gaia in the realm of brown dwarf science will be realized when combined with other detection and characterization programs, both from the ground and in space.
In order to understand the atmospheres as well as the formation mechanism of giant planets formed outside our solar system, the next decade will require an investment in studies of isolated young brown dwarfs. In this white paper we summarize the opportunity for discovery space in the coming decade of isolated brown dwarfs with planetary masses in young stellar associations within 150 pc. We suggest that next generation telescopes and beyond need to invest in characterizing young brown dwarfs in order to fully understand the atmospheres of sibling directly imaged exoplanets as well as the tail end of the star formation process.
We present a new set of solar metallicity atmosphere and evolutionary models for very cool brown dwarfs and self-luminous giant exoplanets, which we term ATMO 2020. Atmosphere models are generated with our state-of-the-art 1D radiative-convective equilibrium code ATMO, and are used as surface boundary conditions to calculate the interior structure and evolution of $0.001-0.075,mathrm{M_{odot}}$ objects. Our models include several key improvements to the input physics used in previous models available in the literature. Most notably, the use of a new H-He equation of state including ab initio quantum molecular dynamics calculations has raised the mass by $sim1-2%$ at the stellar-substellar boundary and has altered the cooling tracks around the hydrogen and deuterium burning minimum masses. A second key improvement concerns updated molecular opacities in our atmosphere model ATMO, which now contains significantly more line transitions required to accurately capture the opacity in these hot atmospheres. This leads to warmer atmospheric temperature structures, further changing the cooling curves and predicted emission spectra of substellar objects. We present significant improvement for the treatment of the collisionally broadened potassium resonance doublet, and highlight the importance of these lines in shaping the red-optical and near-infrared spectrum of brown dwarfs. We generate three different grids of model simulations, one using equilibrium chemistry and two using non-equilibrium chemistry due to vertical mixing, all three computed self-consistently with the pressure-temperature structure of the atmosphere. We show the impact of vertical mixing on emission spectra and in colour-magnitude diagrams, highlighting how the $3.5-5.5,mathrm{mu m}$ flux window can be used to calibrate vertical mixing in cool T-Y spectral type objects.
Europes Gaia spacecraft will soon embark on its five-year mission to measure the absolute parallaxes of the complete sample of 1,000 million objects down to 20 mag. It is expected that thousands of nearby brown dwarfs will have their astrometry determined with sub-milli-arcsecond standard errors. Although this level of accuracy is comparable to the standard errors of the relative parallaxes that are now routinely obtained from the ground for selected, individual objects, the absolute nature of Gaias astrometry, combined with the sample increase from one hundred to several thousand sub-stellar objects with known distances, ensures the uniqueness of Gaias legacy in brown-dwarf science for the coming decade(s). We shortly explore the gain in brown-dwarf science that could be achieved by lowering Gaias faint-end limit from 20 to 21 mag and conclude that two spectral-type sub-classes could be gained in combination with a fourfold increase in the solar-neighbourhood-volume sampled by Gaia and hence in the number of brown dwarfs in the Gaia Catalogue.
The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Further, the prevalence of aperture masking interferometry in the field of high contrast imaging is also allowing observers to sense massive, young planets at solar system scales (~3-30 AU)---separations out of reach to conventional direct imaging techniques. Such observations can provide snapshots at the earliest phases of planet formation---information essential for constraining formation mechanisms as well as evolutionary models of planetary mass companions. As a demonstration of the power of this technique, I briefly review recent aperture masking observations of the HR 8799 system. Moreover, all of the aforementioned techniques are already extremely adept at detecting low-mass stellar companions to their target stars, and I present some recent highlights.
The formation of clouds affects brown dwarf and planetary atmospheres of nearly all effective temperatures. Iron and silicate condense in L dwarf atmospheres and dissipate at the L/T transition. Minor species such as sulfides and salts condense in mid-late T dwarfs. For brown dwarfs below Teff=450 K, water condenses in the upper atmosphere to form ice clouds. Currently over a dozen objects in this temperature range have been discovered, and few previous theoretical studies have addressed the effect of water clouds on brown dwarf or exoplanetary spectra. Here we present a new grid of models that include the effect of water cloud opacity. We find that they become optically thick in objects below Teff=350-375 K. Unlike refractory cloud materials, water ice particles are significantly non-gray absorbers; they predominantly scatter at optical wavelengths through J band and absorb in the infrared with prominent features, the strongest of which is at 2.8 microns. H2O, NH3, CH4, and H2 CIA are dominant opacity sources; less abundant species such as may also be detectable, including the alkalis, H2S, and PH3. PH3, which has been detected in Jupiter, is expected to have a strong signature in the mid-infrared at 4.3 microns in Y dwarfs around Teff=450 K; if disequilibrium chemistry increases the abundance of PH3, it may be detectable over a wider effective temperature range than models predict. We show results incorporating disequilibrium nitrogen and carbon chemistry and predict signatures of low gravity in planetary- mass objects. Lastly, we make predictions for the observability of Y dwarfs and planets with existing and future instruments including the James Webb Space Telescope and Gemini Planet Imager.