No Arabic abstract
We present results based on an implementation of the Godunov Smoothed Particle Hydrodynamics (GSPH), originally developed by Inutsuka (2002), in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear flow test, and the blob test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha (2010): (i) GSPH provides a much improved description of contact discontinuities, with respect to SPH, thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin--Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the blob test. We also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation. The results of our tests demonstrate that GSPH is in fact a highly promising hydrodynamic scheme, also to be coupled to an N-body solver, for astrophysical and cosmological applications. [abridged]
The method of Smoothed Particle Hydrodynamics (SPH) has been widely studied and implemented for a large variety of problems, ranging from astrophysics to fluid dynamics and elasticity problems in solids. However, the method is known to have several deficiencies and discrepancies in comparison with traditional mesh-based codes. In particular, there has been a discussion about its ability to reproduce the Kelvin-Helmholtz Instability in shearing flows. Several authors reported that they were able to reproduce correctly the instability by introducing some improvements to the algorithm. In this contribution, we compare the results of Read et al. (2010) implementation of the SPH algorithm with the original Gadget-2 N-body/SPH code.
We present the McMaster Unbiased Galaxy Simulations (MUGS), the first 9 galaxies of an unbiased selection ranging in total mass from 5$times10^{11}$ M$_odot$ to 2$times10^{12}$ M$_odot$ simulated using n-body smoothed particle hydrodynamics (SPH) at high resolution. The simulations include a treatment of low temperature metal cooling, UV background radiation, star formation, and physically motivated stellar feedback. Mock images of the simulations show that the simulations lie within the observed range of relations such as that between color and magnitude and that between brightness and circular velocity (Tully-Fisher). The greatest discrepancy between the simulated galaxies and observed galaxies is the high concentration of material at the center of the galaxies as represented by the centrally peaked rotation curves and the high bulge-to-total ratios of the simulations determined both kinematically and photometrically. This central concentration represents the excess of low angular momentum material that long has plagued morphological studies of simulated galaxies and suggests that higher resolutions and a more accurate description of feedback will be required to simulate more realistic galaxies. Even with the excess central mass concentrations, the simulations suggest the important role merger history and halo spin play in the formation of disks.
We discuss differences in simulation results that arise between the use of either the thermal energy or the entropy as an independent variable in smoothed particle hydrodynamics (SPH). In this context, we derive a new version of SPH that manifestly conserves both energy and entropy if smoothing lengths are allowed to adapt freely to the local mass resolution. To test various formu- lations of SPH, we consider point-like energy injection and find that powerful explosions are well represented by SPH even when the energy is deposited into a single particle, provided that the entropy equation is integrated. If the thermal energy is instead used as an independent variable, unphysical solutions can be obtained for this problem. We also examine the radiative cooling of gas spheres that collapse and virialize in isolation and of halos that form in cosmological simulations of structure formation. When applied to these problems, the thermal energy version of SPH leads to substantial overcooling in halos that are resolved with up to a few thousand particles, while the entropy formulation is biased only moderately low for these halos. For objects resolved with much larger particle numbers, the two approaches yield consistent results. We trace the origin of the differences to systematic resolution effects in the outer parts of cooling flows. The cumulative effect of this overcooling can be significant. In cosmological simulations of moderate size, we find that the fraction of baryons which cool and condense can be reduced by up to a factor ~2 if the entropy equation is employed rather than the thermal energy equation. We also demonstrate that the entropy method leads to a greatly reduced scatter in the density-temperature relation of the low-density Ly-alpha forest relative to the thermal energy approach, in accord with theoretical expectations.(abridged)
We present an implementation of smoothed particle hydrodynamics (SPH) with improved accuracy for simulations of galaxies and the large-scale structure. In particular, we combine, implement, modify and test a vast majority of SPH improvement techniques in the latest instalment of the GADGET code. We use the Wendland kernel functions, a particle wake-up time-step limiting mechanism and a time-dependent scheme for artificial viscosity, which includes a high-order gradient computation and shear flow limiter. Additionally, we include a novel prescription for time-dependent artificial conduction, which corrects for gravitationally induced pressure gradients and largely improves the SPH performance in capturing the development of gas-dynamical instabilities. We extensively test our new implementation in a wide range of hydrodynamical standard tests including weak and strong shocks as well as shear flows, turbulent spectra, gas mixing, hydrostatic equilibria and self-gravitating gas clouds. We jointly employ all modifications; however, when necessary we study the performance of individual code modules. We approximate hydrodynamical states more accurately and with significantly less noise than standard SPH. Furthermore, the new implementation promotes the mixing of entropy between different fluid phases, also within cosmological simulations. Finally, we study the performance of the hydrodynamical solver in the context of radiative galaxy formation and non-radiative galaxy cluster formation. We find galactic disks to be colder, thinner and more extended and our results on galaxy clusters show entropy cores instead of steadily declining entropy profiles. In summary, we demonstrate that our improved SPH implementation overcomes most of the undesirable limitations of standard SPH, thus becoming the core of an efficient code for large cosmological simulations.
We present a novel Lyman alpha (Ly$alpha$) radiative transfer code, SEURAT, where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby we demonstrate that our code solves the Ly$alpha$ radiative transfer with sufficient accuracy. We emphasise that SEURAT can treat the transfer of Ly$alpha$ photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of Ly$alpha$ photons in the interstellar medium of young star-forming galaxies like Ly$alpha$ emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of Ly$alpha$ emission, which can be compared to the observations of LAEs.