Do you want to publish a course? Click here

A generalization of Hausdorff dimension applied to Hilbert cubes and Wasserstein spaces

185   0   0.0 ( 0 )
 Added by Benoit Kloeckner
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

A Wasserstein spaces is a metric space of sufficiently concentrated probability measures over a general metric space. The main goal of this paper is to estimate the largeness of Wasserstein spaces, in a sense to be precised. In a first part, we generalize the Hausdorff dimension by defining a family of bi-Lipschitz invariants, called critical parameters, that measure largeness for infinite-dimensional metric spaces. Basic properties of these invariants are given, and they are estimated for a naturel set of spaces generalizing the usual Hilbert cube. In a second part, we estimate the value of these new invariants in the case of some Wasserstein spaces, as well as the dynamical complexity of push-forward maps. The lower bounds rely on several embedding results; for example we provide bi-Lipschitz embeddings of all powers of any space inside its Wasserstein space, with uniform bound and we prove that the Wasserstein space of a d-manifold has power-exponential critical parameter equal to d.



rate research

Read More

We show that compact Riemannian manifolds, regarded as metric spaces with their global geodesic distance, cannot contain a number of rigid structures such as (a) arbitrarily large regular simplices or (b) arbitrarily long sequences of points equidistant from pairs of points preceding them in the sequence. All of this provides evidence that Riemannian metric spaces admit what we term loose embeddings into finite-dimensional Euclidean spaces: continuous maps that preserve both equality as well as inequality. We also prove a local-to-global principle for Riemannian-metric-space loose embeddability: if every finite subspace thereof is loosely embeddable into a common $mathbb{R}^N$, then the metric space as a whole is loosely embeddable into $mathbb{R}^N$ in a weakened sense.
130 - Benoit Kloeckner 2009
We study the Wasserstein space (with quadratic cost) of Euclidean spaces as an intrinsic metric space. In particular we compute their isometry groups. Surprisingly, in the case of the line, there exists a (unique) exotic isometric flow. This contrasts with the case of higher-dimensional Euclidean spaces, where all isometries of the Wasserstein space preserve the shape of measures. We also study the curvature and various ranks of these spaces.
The purpose of this note is to record a consequence, for general metric spaces, of a recent result of David Bate. We prove the following fact: Let $X$ be a compact metric space of topological dimension $n$. Suppose that the $n$-dimensional Hausdorff measure of $X$, $mathcal H^n(X)$, is finite. Suppose further that the lower n-density of the measure $mathcal H^n$ is positive, $mathcal H^n$-almost everywhere in $X$. Then $X$ contains an $n$-rectifiable subset of positive $mathcal H^n$-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Csornyei-Jones.
We prove the differentiability of Lipschitz maps X-->V, where X is a complete metric measure space satisfying a doubling condition and a Poincare inequality, and V is a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direction of tangent vectors to suitable rectifiable curves.
208 - Anthony Weston 2012
This work has been expanded and fully incorporated into arXiv:1203.5837. Cases of equality in the classical 2-negative type inequalities for Hilbert spaces are characterized in terms of balanced signed simplices. It follows that a metric subspace of a Hilbert space H has strict 2-negative type if and only if it is affinely independent (when H is considered as a real vector space). This allows a complete description of Shkarins class M.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا