No Arabic abstract
This work has been expanded and fully incorporated into arXiv:1203.5837. Cases of equality in the classical 2-negative type inequalities for Hilbert spaces are characterized in terms of balanced signed simplices. It follows that a metric subspace of a Hilbert space H has strict 2-negative type if and only if it is affinely independent (when H is considered as a real vector space). This allows a complete description of Shkarins class M.
Suppose $0 < p leq 2$ and that $(Omega, mu)$ is a measure space for which $L_{p}(Omega, mu)$ is at least two-dimensional. The central results of this paper provide a complete description of the subsets of $L_{p}(Omega, mu)$ that have strict $p$-negative type. In order to do this we study non-trivial $p$-polygonal equalities in $L_{p}(Omega, mu)$. These are equalities that can, after appropriate rearrangement and simplification, be expressed in the form begin{eqnarray*} sumlimits_{j, i = 1}^{n} alpha_{j} alpha_{i} {| z_{j} - z_{i} |}_{p}^{p} & = & 0 end{eqnarray*} where ${ z_{1}, ldots, z_{n} }$ is a subset of $L_{p}(Omega, mu)$ and $alpha_{1}, ldots, alpha_{n}$ are non-zero real numbers that sum to zero. We provide a complete classification of the non-trivial $p$-polygonal equalities in $L_{p}(Omega, mu)$. The cases $p < 2$ and $p = 2$ are substantially different and are treated separately. The case $p = 1$ generalizes an elegant result of Elsner, Han, Koltracht, Neumann and Zippin. Another reason for studying non-trivial $p$-polygonal equalities in $L_{p}(Omega, mu)$ is due to the fact that they preclude the existence of certain types of isometry. For example, our techniques show that if $(X,d)$ is a metric space that has strict $q$-negative type for some $q geq p$, then: (1) $(X,d)$ is not isometric to any linear subspace $W$ of $L_{p}(Omega, mu)$ that contains a pair of disjointly supported non-zero vectors, and (2) $(X,d)$ is not isometric to any subset of $L_{p}(Omega, mu)$ that has non-empty interior. Furthermore, in the case $p = 2$, it also follows that $(X,d)$ is not isometric to any affinely dependent subset of $L_{2}(Omega, mu)$.
We show that compact Riemannian manifolds, regarded as metric spaces with their global geodesic distance, cannot contain a number of rigid structures such as (a) arbitrarily large regular simplices or (b) arbitrarily long sequences of points equidistant from pairs of points preceding them in the sequence. All of this provides evidence that Riemannian metric spaces admit what we term loose embeddings into finite-dimensional Euclidean spaces: continuous maps that preserve both equality as well as inequality. We also prove a local-to-global principle for Riemannian-metric-space loose embeddability: if every finite subspace thereof is loosely embeddable into a common $mathbb{R}^N$, then the metric space as a whole is loosely embeddable into $mathbb{R}^N$ in a weakened sense.
A Wasserstein spaces is a metric space of sufficiently concentrated probability measures over a general metric space. The main goal of this paper is to estimate the largeness of Wasserstein spaces, in a sense to be precised. In a first part, we generalize the Hausdorff dimension by defining a family of bi-Lipschitz invariants, called critical parameters, that measure largeness for infinite-dimensional metric spaces. Basic properties of these invariants are given, and they are estimated for a naturel set of spaces generalizing the usual Hilbert cube. In a second part, we estimate the value of these new invariants in the case of some Wasserstein spaces, as well as the dynamical complexity of push-forward maps. The lower bounds rely on several embedding results; for example we provide bi-Lipschitz embeddings of all powers of any space inside its Wasserstein space, with uniform bound and we prove that the Wasserstein space of a d-manifold has power-exponential critical parameter equal to d.
Coherent states in a projected Hilbert space have many useful properties. When there are conserved quantities, a representation of the entire Hilbert space is not necessary. The same issue arises when conditional observations are made with post-selected measurement results. In these cases, only a part of the Hilbert space needs to be represented, and one can define this restriction by way of a projection operator. Here coherent state bases and normally-ordered phase-space representations are introduced for treating such projected Hilbert spaces, including existence theorems and dynamical equations. These techniques are very useful in studying novel optical or microwave integrated photonic quantum technologies, such as boson sampling or Josephson quantum computers. In these cases states become strongly restricted due to inputs, nonlinearities or conditional measurements. This paper focuses on coherent phase states, which have especially simple properties. Practical applications are reported on calculating recurrences in anharmonic oscillators, the effects of arbitrary phase-noise on Schrodinger cat fringe visibility, and on boson sampling interferometry for large numbers of modes.
We study the Wasserstein space (with quadratic cost) of Euclidean spaces as an intrinsic metric space. In particular we compute their isometry groups. Surprisingly, in the case of the line, there exists a (unique) exotic isometric flow. This contrasts with the case of higher-dimensional Euclidean spaces, where all isometries of the Wasserstein space preserve the shape of measures. We also study the curvature and various ranks of these spaces.